Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6402, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493224

RESUMO

Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3ß-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.


Assuntos
Pregnanolona , Progesterona , Gravidez , Feminino , Ratos , Animais , Pregnanolona/farmacologia , Progesterona/farmacologia , Antígeno Nuclear de Célula em Proliferação , Bicuculina/farmacologia , Receptores de GABA-A , Corpo Lúteo
2.
J Endocrinol ; 258(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115241

RESUMO

Neuroactive steroids can rapidly regulate multiple physiological functions in the central and peripheral nervous systems. The aims of the present study were to determine whether allopregnanolone (ALLO), administered in low nanomolar and high micromolar concentrations, can: (i) induce changes in the ovarian progesterone (P4) and estradiol (E2) release; (ii) modify the ovarian mRNA expression of Hsd3b1 (3ß-hydroxysteroid dehydrogenase, 3ß-HSD)3ß-, Akr1c3 (20α-hydroxysteroid dehydrogenase, 20α-HSD), and Akr1c14 (3α-hydroxy steroid oxidoreductase, 3α-HSOR)); and (iii) modulate the ovarian expression of progesterone receptors A and B, α and ß estrogenic receptors, luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR). To further characterize ALLO peripheral actions, the effects were evaluated using a superior mesenteric ganglion-ovarian nervous plexus-ovary (SMG-ONP-O) and a denervated ovary (DO) systems. ALLO SMG administration increased P4 concentration in the incubation liquid by decreasing ovarian 20α-HSD mRNA, and it also increased ovarian 3α-HSOR mRNA expression. In addition, ALLO neural peripheral modulation induced an increase in the expression of ovarian LHR, PRA, PRB, and ERα. Direct ALLO administration to the DO decreased E2 and increased P4 concentration in the incubation liquid. The mRNA expression of 3ß-HSD decreased and 20α-HSD increased. Further, ALLO in the OD significantly changed ovarian FSHR and PRA expression. This is the first evidence of ALLO's direct effect on ovarian steroidogenesis. Our results provide important insights about how this neuroactive steroid interacts both with the PNS and the ovary, and these findings might help devise some of the pleiotropic effects of neuroactive steroids on female reproduction. Moreover, ALLO modulation of ovarian physiology might help uncover novel treatment approaches for reproductive diseases.


Assuntos
Neuroesteroides , Pregnanolona , Feminino , Humanos , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Ovário/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiesteroide Desidrogenases/farmacologia , RNA Mensageiro/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/farmacologia
3.
Cells Tissues Organs ; 205(4): 240-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212827

RESUMO

The pineal gland of mammals undergoes morphological and biochemical changes throughout the gestation period. In viscachas, a seasonal breeding rodent, pregnancy lasts approximately 154 days and 3 stages can be defined, i.e., early, mid, and late pregnancy. The purpose of this study is to analyze morphometric variations in the expression of S-100 protein, glial fibrillary acidic protein (GFAP), and vimentin in the interstitial cells (IC) in pregnant and nonpregnant viscachas by immunohistochemistry (IHC). We also aim to evaluate a probable relation between glandular activity and pregnancy. The immunopositive percentage area (%IA) for the studied proteins and the number of immunoreactive cells against the S-100 protein with a visible nucleus (nº IC-S-100) were analyzed. Estradiol and progesterone serum levels were also determined by RIA. Variations in the expression of the S-100 protein and GFAP, as well as changes in the nº IC-S-100 related to serum hormone levels, were found between pregnant and nonpregnant viscachas. Viscachas in mid pregnancy exhibited the highest values of %IA for the analyzed proteins, followed by females in late and early pregnancy, while the nonpregnant ones showed the lowest values for all of the groups studied. Likewise, the nº IC-S-100 also varied following the same pattern. Thus, these variations seem to indicate a direct relationship between glandular activity and gonadal hormone levels. On these grounds, we may conclude that IC undergo changes in relation to ovarian hormone levels and participate in the regulation of glandular activity during pregnancy. However, further research is necessary to elucidate this relationship.


Assuntos
Tumor de Células de Leydig/metabolismo , Glândula Pineal/metabolismo , Roedores/anatomia & histologia , Animais , Feminino , Imuno-Histoquímica , Glândula Pineal/citologia , Gravidez
4.
Int J Endocrinol ; 2017: 7492960, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29391866

RESUMO

The presence of pigment has been demonstrated in different nervous structures such as those of retina, substantia nigra, and locus coeruleus. These pigments have also been described in the pineal gland of different mammal species. Histochemical and ultrastructural studies of the pineal gland of female viscacha (Lagostomus maximus maximus) were performed to analyze the presence of pigmented cells under natural conditions and to evaluate a probable relation between pigment content and glandular activity during pregnancy. The following techniques were applied: hematoxylin-eosin, phosphotungstic acid-hematoxylin, Masson-Fontana silver, DOPA histochemistry, Schmorl's reaction and toluidine blue. Estradiol and progesterone serum levels were determined by RIA. The ultrastructural features of the pineal pigment granules were also analyzed. Pigment granules were observed in a random distribution, but the pigmented cells were frequently found near blood vessels. The pineal pigment was histochemically identified as melanin. Differences in the amount of pigmented cells were found between pregnant and nonpregnant viscachas. The ultrastructural analysis revealed the presence of premelanosomes and melanosomes. Estradiol and progesterone levels vary during pregnancy. In conclusion, the changes in the amount of pigment content and hormone levels may indicate that the pineal gland of female viscacha is susceptible to endocrine variations during pregnancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...