Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1253480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840737

RESUMO

Spore-forming probiotic bacteria offer interesting properties as they have an intrinsic high stability, and when consumed, they are able to survive the adverse conditions encountered during the transit thorough the host gastrointestinal (GI) tract. A traditional healthy food, natto, exists in Japan consisting of soy fermented by the spore-forming bacterium Bacillus subtilis natto. The consumption of natto is linked to many beneficial health effects, including the prevention of high blood pressure, osteoporosis, and cardiovascular-associated disease. We hypothesize that the bacterium B. subtilis natto plays a key role in the beneficial effects of natto for humans. Here, we present the isolation of B. subtilis DG101 from natto and its characterization as a novel spore-forming probiotic strain for human consumption. B. subtilis DG101 was non-hemolytic and showed high tolerance to lysozyme, low pH, bile salts, and a strong adherence ability to extracellular matrix proteins (i.e., fibronectin and collagen), demonstrating its potential application for competitive exclusion of pathogens. B. subtilis DG101 forms robust liquid and solid biofilms and expresses several extracellular enzymes with activity against food diet-associated macromolecules (i.e., proteins, lipids, and polysaccharides) that would be important to improve food diet digestion by the host. B. subtilis DG101 was able to grow in the presence of toxic metals (i.e., chromium, cadmium, and arsenic) and decreased their bioavailability, a feature that points to this probiotic as an interesting agent for bioremediation in cases of food and water poisoning with metals. In addition, B. subtilis DG101 was sensitive to antibiotics commonly used to treat infections in medical settings, and at the same time, it showed a potent antimicrobial effect against pathogenic bacteria and fungi. In mammalians (i.e., rats), B. subtilis DG101 colonized the GI tract, and improved the lipid and protein serum homeostasis of animals fed on the base of a normal- or a deficient-diet regime (dietary restriction). In the animal model for longevity studies, Caenorhabditis elegans, B. subtilis DG101 significantly increased the animal lifespan and prevented its age-related behavioral decay. Overall, these results demonstrate that B. subtilis DG101 is the key component of natto with interesting probiotic properties to improve and protect human health.

2.
Clin Case Rep ; 8(12): 3120-3125, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33363892

RESUMO

The gut microbiota, and particularly probiotic bacteria, has emerged as a promising and novel intervention to fight the looming worldwide diabetes epidemic when combined with the appropriate medication. Herein, we report two cases of patient with type 2 diabetes refractory to conventional therapy that showed notable improvement after probiotic intervention.

3.
Front Microbiol ; 11: 1761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042030

RESUMO

Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.

4.
Mol Microbiol ; 104(5): 804-821, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28294433

RESUMO

Bacterial adherence to extracellular matrix proteins (ECMp) plays important roles during host-pathogen interaction, however its genetic regulation remains poorly understood. yloA of the model bacterium Bacillus subtilis shows high homology to genes encoding fibronectin-binding proteins of Gram-positive pathogens. Here, we characterized the regulatory network of YloA-dependent adhesive properties of the probiotic B. subtilis natto (Bsn). YloA-proficient, but not YloA-deficient, Bsn specifically bound to ECMp in a concentration-dependent manner and were proficient in biofilm formation. yloA expression showed a continuous increase in activity during the growth phase and decreased during the stationary phase. The transcription factors AbrB and DegU downregulated yloA expression during the logarithmic and stationary growth phases respectively. Analysis of the yloA promoter region revealed the presence of AT-rich direct and inverted repeats previously reported to function as DegU-recognized binding sites. In spo0A cells, yloA expression was completely turned off because of upregulation of AbrB throughout growth. Accordingly, DNase I footprinting analysis confirmed that AbrB bound to the promoter region of yloA. Interestingly, Bsn bound fibronectin with higher affinity, lower Kd, than several bacterial pathogens and competitively excluded them from binding to immobilized-fibronectin, a finding that might be important for the anti-infective properties of B. subtilis and its relatives.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Transporte/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Matriz Extracelular/microbiologia , Proteínas da Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA