Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38567654

RESUMO

CONTEXT: Melanocortin-4 receptor (MC4R) plays an important role in body weight regulation. Pathogenic MC4R variants are the most common cause of monogenic obesity. OBJECTIVE: We have identified 17 MC4R variants in adult and pediatric patients with obesity. Here, we aimed to functionally characterize these variants by analyzing four different aspects of MC4R signaling. In addition, we aimed to analyze the effect of setmelanotide, a potent MC4R agonist, on these MC4R variants. MATERIALS AND METHODS: Cell surface expression and α-MSH- or setmelanotide-induced cAMP response, ß-arrestin-2 recruitment, and ERK activation were measured in cells expressing either wild type (WT) or variant MC4R. RESULTS: We found a large heterogeneity in the function of these variants. We identified variants with a loss of response for all studied MC4R signaling, variants with no cAMP accumulation or ERK activation but normal ß-arrestin-2 recruitment, and variants with normal cAMP accumulation and ERK activation but decreased ß-arrestin-2 recruitment, indicating disrupted desensitization and signaling mechanisms. Setmelanotide displayed a greater potency and similar efficacy as α-MSH, and induced significantly increased maximal cAMP responses of several variants compared to α-MSH. Despite the heterogeneity in functional response, there was no apparent difference in the obesity phenotype in our patients. DISCUSSION: We show that these obesity-associated MC4R variants affect MC4R signaling differently, yet leading to a comparable clinical phenotype. Our results demonstrate the clinical importance of assessing the effect of MC4R variants on a range of molecular signaling mechanisms to determine their association with obesity, which may aid in improving personalized treatment.

2.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259065

RESUMO

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Assuntos
Candida albicans , Glucanos , beta-Glucanas , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas com Motivos Associados a Patógenos , Hipóxia/metabolismo , Lactatos/metabolismo , Parede Celular/metabolismo
3.
Trends Microbiol ; 29(5): 416-427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33059975

RESUMO

In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.


Assuntos
Fungos/imunologia , Fungos/patogenicidade , Evasão da Resposta Imune , Estresse Fisiológico/imunologia , Animais , Fungos/classificação , Interações Hospedeiro-Patógeno , Humanos , Micoses/imunologia , Micoses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...