Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Imaging ; 3: e13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510163

RESUMO

Image-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed. Additionally, due to the extremely low signal-to-noise ratio (SNR), the estimation of any image parameter is heavily affected by noise resulting in a significant fraction of incorrect estimates. Although low SNR and processing millions of images by hundreds of sequential steps requiring substantial computational resources are specific to cryo-EM, these characteristics may be shared by other biological imaging domains. Here, we present Scipion, a Python generic open-source workflow engine specifically adapted for image processing. Its main characteristics are: (a) interoperability, (b) smart object model, (c) gluing operations, (d) comparison operations, (e) wide set of domain-specific operations, (f) execution in streaming, (g) smooth integration in high-performance computing environments, (h) execution with and without graphical capabilities, (i) flexible visualization, (j) user authentication and private access to private data, (k) scripting capabilities, (l) high performance, (m) traceability, (n) reproducibility, (o) self-reporting, (p) reusability, (q) extensibility, (r) software updates, and (s) non-restrictive software licensing.

2.
J Struct Biol ; 214(4): 107916, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332745

RESUMO

Nanodiscs have become a popular tool in structure determination of membrane proteins using cryogenic electron microscopy and single particle analysis. However, the structure determination of small membrane proteins remains challenging. When the embedded protein is in the same size range as the nanodisc, the nanodisc can significantly contribute to the alignment and classification during the structure determination process. In those cases, it is crucial to minimize the heterogeneity in the nanodisc preparations to assure maximum accuracy in the classification and alignment steps of single particle analysis. Here, we introduce a new in-silico method for the characterization of nanodisc samples that is based on analyzing the Feret diameter distribution of their particle projection as imaged in the electron microscope. We validated the method with comprehensive simulation studies and show that Feret signatures can detect subtle differences in nanodisc morphologies and composition that might otherwise go unnoticed. We used the method to identify a specific biochemical nanodisc preparation with low size variations, allowing us to obtain a structure of the 23-kDa single-span membrane protein Bcl-xL while embedded in a nanodisc. Feret signature analysis can steer experimental data collection strategies, allowing more efficient use of high-end data collection hardware, as well as image analysis investments in studies where nanodiscs significantly contribute to the total volume of the full molecular species.

3.
J Struct Biol ; 214(4): 107921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372192

RESUMO

The throughput and fidelity of cryogenic cellular electron tomography (cryo-ET) is constantly increasing through advances in cryogenic electron microscope hardware, direct electron detection devices, and powerful image processing algorithms. However, the need for careful optimization of sample preparations and for access to expensive, high-end equipment, make cryo-ET a costly and time-consuming technique. Generally, only after the last step of the cryo-ET workflow, when reconstructed tomograms are available, it becomes clear whether the chosen imaging parameters were suitable for a specific type of sample in order to answer a specific biological question. Tools for a-priory assessment of the feasibility of samples to answer biological questions and how to optimize imaging parameters to do so would be a major advantage. Here we describe MEPSi (Membrane Embedded Protein Simulator), a simulation tool aimed at rapid and convenient evaluation and optimization of cryo-ET data acquisition parameters for studies of transmembrane proteins in their native environment. We demonstrate the utility of MEPSi by showing how to detangle the influence of different data collection parameters and different orientations in respect to tilt axis and electron beam for two examples: (1) simulated plasma membranes with embedded single-pass transmembrane αIIbß3 integrin receptors and (2) simulated virus membranes with embedded SARS-CoV-2 spike proteins.


Assuntos
COVID-19 , Proteínas de Membrana , Humanos , SARS-CoV-2
4.
J Org Chem ; 85(24): 16072-16081, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33258593

RESUMO

Molecular recognition of carbohydrates is a key step in essential biological processes. Carbohydrate receptors can distinguish monosaccharides even if they only differ in a single aspect of the orientation of the hydroxyl groups or harbor subtle chemical modifications. Hydroxyl-by-fluorine substitution has proven its merits for chemically mapping the importance of hydroxyl groups in carbohydrate-receptor interactions. 19F NMR spectroscopy could thus be adapted to allow contact mapping together with screening in compound mixtures. Using a library of fluorinated glucose (Glc), mannose (Man), and galactose (Gal) derived by systematically exchanging every hydroxyl group by a fluorine atom, we developed a strategy combining chemical mapping and 19F NMR T2 filtering-based screening. By testing this strategy on the proof-of-principle level with a library of 13 fluorinated monosaccharides to a set of three carbohydrate receptors of diverse origin, i.e. the human macrophage galactose-type lectin, a plant lectin, Pisum sativum agglutinin, and the bacterial Gal-/Glc-binding protein from Escherichia coli, it became possible to simultaneously define their monosaccharide selectivity and identify the essential hydroxyls for interaction.

5.
J Fungi (Basel) ; 6(3)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859091

RESUMO

Immune inertness of Aspergillus fumigatus conidia is attributed to its surface rodlet-layer made up of RodAp, characterized by eight conserved cysteine residues forming four disulfide bonds. Earlier, we showed that the conserved cysteine residue point (ccrp) mutations result in conidia devoid of the rodlet layer. Here, we extended our study comparing the surface organization and immunoreactivity of conidia carrying ccrp-mutations with the RODA deletion mutant (∆rodA). Western blot analysis using anti-RodAp antibodies indicated the absence of RodAp in the cytoplasm of ccrp-mutant conidia. Immunolabeling revealed differential reactivity to conidial surface glucans, the ccrp-mutant conidia preferentially binding to α-(1,3)-glucan, ∆rodA conidia selectively bound to ß-(1,3)-glucan; the parental strain conidia showed negative labeling. However, permeability of ccrp-mutants and ∆rodA was similar to the parental strain conidia. Proteomic analyses of the conidial surface exposed proteins of the ccrp-mutants showed more similarities with the parental strain, but were significantly different from the ∆rodA. Ccrp-mutant conidia were less immunostimulatory compared to ∆rodA conidia. Our data suggest that (i) the conserved cysteine residues are essential for the trafficking of RodAp and the organization of the rodlet layer on the conidial surface, and (ii) targeted point mutation could be an alternative approach to study the role of fungal cell-wall genes in host-fungal interaction.

6.
J Mol Biol ; 430(20): 3784-3801, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30096347

RESUMO

Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in ß-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in ß-sheet characteristic of the amyloid cross-ß structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Conformação Proteica , Amiloide/ultraestrutura , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Análise Espectral , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...