RESUMO
Quality of in vitro-produced embryos is influenced by changes in gene expression in response to adverse conditions. Gene markers for predicting 'good embryos' do not exist at present. We propose that the expression of pluripotency markers OCT4-SOX2-NANOG in D9 (day 9) bovine demi-embryos correlated with development at D13 (day 13). Day 8 in vitro-produced blastocysts were split in two cloned halves, one half (D9) was subjected to analysis of pluripotency markers and the other was kept in culture until D13 of development. Embryo development was scored and correlated with its own status at D9 and assigned to one of two categories: G1, arrested/dead; or G2, development up to D13. SOX2 and NANOG expression levels were significantly higher in embryos from G1 and there was also negative correlation between SOX2 and embryo survival to D13 (G3; r = -0.37; P = 0.03). We observed a significant reduction in the expression of the three studied genes from D9 to D13. Furthermore, there was a correlation between the expression of pluripotency markers at D9 and embryo diameter and the expression of trophoblastic markers at D13 (TP1-EOMES-FGF4-CDX2-TKDP1). Finally, the quotient between the relative expression of SOX2 and OCT4 in the D9 blastocysts from G1 and G2 showed that embryos that were considered as competent (G2) had a quotient close to one, while the other group had a quotient of 2.3 due to a higher expression of SOX2. These results might indicate that overexpression of SOX2 at the blastocyst stage had a negative effect on the control of embryonic developmental potential.
Assuntos
Blastocisto/metabolismo , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXB1/genética , Animais , Blastocisto/citologia , Bovinos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Fatores de TempoRESUMO
The kodkod population is in constant decrease and the somatic cell nuclear transfer (SCNT) might help to preserve the genetic pool of this species. The cell cycle synchronization of donor cells plays a crucial role in SCNT. The objective of this research was to evaluate two different methods for quiescence induction, serum starvation (SS) and contact inhibition (CI), both for 1, 3 and 5 days, on skin fibroblast from domestic cat and kodkod. Flow cytometry analysis revealed that in domestic cat, SS and CI, both at 3 and 5 days, increased the percentage of fibroblasts in G0/G1 compared to growing cells (GC) (p < .05). In kodkod, only SS for 3 and 5 days and CI for 1 and 3 days increased the percentage of fibroblasts in G0/G1 compared to GC (p < .05). Viability analysis by differential staining revealed that SS for 5 days decreased the proportion of live fibroblasts in domestic cat and kodkod (p < .05). Regarding gene expression analysis, in domestic cat fibroblasts, no differences were found in the BAX/BCL2 ratio in SS and CI (both at 1, 3 and 5 days) compared to GC. In kodkod fibroblasts, BAX/BCL2 ratio was increased in CI at 3 and 5 days compared to SS at 3 and 5 days (p < .05). In conclusion, in kodkod fibroblasts SS for 5 days and CI after 3 days might have a negative impact on cellular viability. According to these results, we suggest SS for 3 days for cell cycle synchronization in kodkod fibroblasts.
Assuntos
Ciclo Celular/fisiologia , Felidae/fisiologia , Fibroblastos/citologia , Técnicas de Transferência Nuclear/veterinária , Animais , Apoptose/genética , Sobrevivência Celular , Clonagem de Organismos/veterinária , Inibição de Contato , Meios de Cultura Livres de Soro , Perfilação da Expressão Gênica , Fase de Repouso do Ciclo CelularRESUMO
Stem cells have been postulated as responsible for cell regeneration in highly and continuously regenerative tissues such as the endometrium. Few studies in cattle have identified and specified the presence of stem cells in the endometrium during the oestrous cycle. The aim of this study was to investigate the presence of mesenchymal stem cells (MSCs) in the bovine endometrium during the follicular phase (FP) of the oestrous cycle. Uterine tissue was collected in the time-frame comprising day 18 of the cycle and ovulation (day 0). We isolated, cultured and expanded four primary cell lines from endometrium and identified byRT-qPCR the expression of OCT4, SOX2 but not NANOG (undifferentiated/embryonic markers), CD44 (MSCs marker) and c-KIT (stem cell marker) genes; and the encoded Oct4, Sox2 and Cd44 proteins by Western blot or immunostaining of paraffin-embedded tissue in endometrium. We demonstrated that cells isolated from bovine endometrium displayed essentially the same gene expression pattern; however, at the protein level, Oct4 and Cd44 were not detected. Besides, they showed typical functional characteristics of MSCs such as fibroblast-like morphology, plastic adherence, high proliferative capacity, clone formation in vitro and the ability to differentiate into chondrogenic, osteogenic and adipogenic lineages. We obtained for the first time an extensive characterization of undifferentiated cells populations contained in the bovine endometrium during the FP of the oestrous cycle.
Assuntos
Endométrio/citologia , Fase Folicular , Células-Tronco Mesenquimais/citologia , Animais , Bovinos , Diferenciação Celular , Células Cultivadas , Ciclo Estral , Feminino , Expressão GênicaRESUMO
Endometrial stem cells have been identified in humans, mice and pigs. This study was designed to determine whether the uterine endometrium of cycling cows contains such cells, to identify markers of stemness and ultimately to isolate putative stem/progenitor cell and evaluate their capability to differentiate into mesodermal derivatives. Uteri from healthy cows in the early (days 1-5) and late luteal phases (days 13-18) of the oestrous cycle were collected. Total RNA and proteins were isolated and searched for gene markers of embryonic (OCT4, NANOG, SOX2) and mesenchymal (CD44, STAT3, CD-117) stem cells and for protein markers (Oct4, Sox2, Cd44) in Western blots or immunostaining of paraffin-embedded tissue. Primary cell cultures were isolated; characterized in terms of morphology, colony formation and gene/protein expression; and induced osteogenic and chondrogenic differentiation. We identified expression of embryonic (OCT4 and SOX2, but not NANOG) and mesenchymal (STAT3, CD44 and c-KIT) gene markers in the endometrium of cycling cows and the encoded proteins (Oct4, Sox2 and Cd44) in both stages of the oestrous cycle. Derived cell lines displayed essentially the same gene expression pattern; however, at the protein level, Oct4 was not detected. No clear influence of the stage of the oestrous cycle was found. Cell lines from late luteal phase displayed osteogenic and chondrogenic differentiation potential upon chemical stimulation. In this research, we demonstrated the presence of mesenchymal progenitor cell populations of apparently mesenchymal origin in the endometrium of cycling cows, in both the early and late phases of the oestrous cycle. The cells isolated from the late luteal phase were more acquiescent to differentiate into mesodermal derivatives than cells in the early luteal phase. Our findings might have implications for the understanding of uterine stem cell biology in cows and other farm animal species.
Assuntos
Bovinos , Endométrio/citologia , Ciclo Estral , Células-Tronco Mesenquimais/citologia , Fator 3 de Transcrição de Octâmero/genética , Animais , Biomarcadores/análise , Diferenciação Celular , Células Cultivadas , Feminino , Expressão Gênica , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/genética , Fator 3 de Transcrição de Octâmero/análise , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXB1/análise , Fatores de Transcrição SOXB1/genéticaRESUMO
The objective of this study was to identify microRNAs (miRNAs) expressed in bovine (Bos Taurus) cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or in vitro fertilization) during elongation. Day 7 bovine expanded blastocysts produced by hand made cloning (HMC) or in vitro fertilization were bulk-transferred to synchronized recipient cattle (48 HMC embryos to 10 recipients and 28 in vitro-produced embryos to four recipients). Elongated embryos were retrieved at Day 17; miRNAs were isolated and subjected to microarray screening using custom composite slides spotted with human, mouse, and rat and in silico-predicted miRNAs. An initial profile of expressed miRNAs was determined in cloned embryos and somatic donor cells; this profile changed after somatic cell nucleus transfer, identifying differentially expressed miRNAs between cloned and in vitro-produced bovine embryos. Furthermore, microarray data were validated using a miRNA-specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) approach (miR-Q). There was an 83% correlation (P=0.01) between microarray and qPCR data. Based on qRT-PCR, correct reprogramming of some miRNAs from the donor cells was confirmed in cloned bovine embryos, whereas other somatic miRNAs were not appropriately reprogrammed. Some of the miRNAs that were equally reprogrammed clustered on the same chromosomal location in the bovine genome. In conclusion, reprogramming of miRNAs seemed to occur in cloned bovine embryos. This could have profound implications for elucidating nuclear reprogramming in somatic cloning, as well as for the role of miRNAs in preimplantation mammalian development.