Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 9(1)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813538

RESUMO

Microbial cooperation pervades ecological scales, from single-species populations to host-associated microbiomes. Understanding the mechanisms promoting the stability of cooperation against potential threats by cheaters is a major question that only recently has been approached experimentally. Synthetic biology has helped to uncover some of these basic mechanisms, which were to some extent anticipated by theoretical predictions. Moreover, synthetic cooperation is a promising lead towards the engineering of novel functions and enhanced productivity of microbial communities. Here, we review recent progress on engineered cooperation in microbial ecosystems. We focus on bottom-up approaches that help to better understand cooperation at the population level, progressively addressing the challenges of tackling higher degrees of complexity: spatial structure, multispecies communities, and host-associated microbiomes. We envisage cooperation as a key ingredient in engineering complex microbial ecosystems.

2.
R Soc Open Sci ; 5(7): 180121, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109068

RESUMO

Ecosystems are complex systems, currently experiencing several threats associated with global warming, intensive exploitation and human-driven habitat degradation. Because of a general presence of multiple stable states, including states involving population extinction, and due to the intrinsic nonlinearities associated with feedback loops, collapse in ecosystems could occur in a catastrophic manner. It has been recently suggested that a potential path to prevent or modify the outcome of these transitions would involve designing synthetic organisms and synthetic ecological interactions that could push these endangered systems out of the critical boundaries. In this paper, we investigate the dynamics of the simplest mathematical models associated with four classes of ecological engineering designs, named Terraformation motifs (TMs). These TMs put in a nutshell different ecological strategies. In this context, some fundamental types of bifurcations pervade the systems' dynamics. Mutualistic interactions can enhance persistence of the systems by means of saddle-node bifurcations. The models without cooperative interactions show that ecosystems achieve restoration through transcritical bifurcations. Thus, our analysis of the models allows us to define the stability conditions and parameter domains where these TMs must work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...