Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20212021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697638

RESUMO

The role of the blood-brain barrier (BBB) in Alzheimer's and other neurodegenerative diseases is still the subject of many studies. However, those studies using high-throughput methods have been compromised by the lack of Gene Ontology (GO) annotations describing the role of proteins in the normal function of the BBB. The GO Consortium provides a gold-standard bioinformatics resource used for analysis and interpretation of large biomedical data sets. However, the GO is also used by other research communities and, therefore, must meet a variety of demands on the breadth and depth of information that is provided. To meet the needs of the Alzheimer's research community we have focused on the GO annotation of the BBB, with over 100 transport or junctional proteins prioritized for annotation. This project has led to a substantial increase in the number of human proteins associated with BBB-relevant GO terms as well as more comprehensive annotation of these proteins in many other processes. Furthermore, data describing the microRNAs that regulate the expression of these priority proteins have also been curated. Thus, this project has increased both the breadth and depth of annotation for these prioritized BBB proteins. Database URLhttps://www.ebi.ac.uk/QuickGO/.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Doença de Alzheimer/genética , Biologia Computacional , Bases de Dados Genéticas , Ontologia Genética , Humanos , Anotação de Sequência Molecular
2.
J Alzheimers Dis ; 77(1): 257-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32716361

RESUMO

BACKGROUND: The analysis and interpretation of data generated from patient-derived clinical samples relies on access to high-quality bioinformatics resources. These are maintained and updated by expert curators extracting knowledge from unstructured biological data described in free-text journal articles and converting this into more structured, computationally-accessible forms. This enables analyses such as functional enrichment of sets of genes/proteins using the Gene Ontology, and makes the searching of data more productive by managing issues such as gene/protein name synonyms, identifier mapping, and data quality. OBJECTIVE: To undertake a coordinated annotation update of key public-domain resources to better support Alzheimer's disease research. METHODS: We have systematically identified target proteins critical to disease process, in part by accessing informed input from the clinical research community. RESULTS: Data from 954 papers have been added to the UniProtKB, Gene Ontology, and the International Molecular Exchange Consortium (IMEx) databases, with 299 human proteins and 279 orthologs updated in UniProtKB. 745 binary interactions were added to the IMEx human molecular interaction dataset. CONCLUSION: This represents a significant enhancement in the expert curated data pertinent to Alzheimer's disease available in a number of biomedical databases. Relevant protein entries have been updated in UniProtKB and concomitantly in the Gene Ontology. Molecular interaction networks have been significantly extended in the IMEx Consortium dataset and a set of reference protein complexes created. All the resources described are open-source and freely available to the research community and we provide examples of how these data could be exploited by researchers.


Assuntos
Doença de Alzheimer/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas , Sistemas Inteligentes , Mapas de Interação de Proteínas/genética , Setor Público , Doença de Alzheimer/diagnóstico , Humanos
3.
J Alzheimers Dis ; 75(4): 1417-1435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32417785

RESUMO

BACKGROUND: Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research. OBJECTIVE: We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated microRNAs (miRs). METHODS: We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in AD and the miRs regulating their expression. PANTHER was used for enrichment analysis of previously published AD data. Cytoscape was used for visualizing and analyzing miR-target interactions captured from published experimental evidence. RESULTS: We contributed 3,084 new annotations for 494 entities, i.e., on average six new annotations per entity. This included a total of 1,352 annotations for 40 prioritized microglial proteins implicated in AD and 66 miRs regulating their expression, yielding an average of twelve annotations per prioritized entity. The updated GO resource was then used to re-analyze previously published data. The re-analysis showed novel processes associated with AD-related genes, not identified in the original study, such as 'gliogenesis', 'regulation of neuron projection development', or 'response to cytokine', demonstrating enhanced applicability of GO for neuroscience research. CONCLUSIONS: This study highlights ongoing development of the neurobiological aspects of GO and demonstrates the value of biocuration activities in the area, thus helping to delineate the molecular bases of AD to aid the development of diagnostic tools and treatments.


Assuntos
Doença de Alzheimer/genética , Encefalite/genética , Expressão Gênica , Ontologia Genética , Biologia Computacional/métodos , Humanos , Microglia/metabolismo , Anotação de Sequência Molecular/métodos
4.
Nucleic Acids Res ; 47(D1): D930-D940, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30398643

RESUMO

ChEMBL is a large, open-access bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012, 2014 and 2017 Nucleic Acids Research Database Issues. In the last two years, several important improvements have been made to the database and are described here. These include more robust capture and representation of assay details; a new data deposition system, allowing updating of data sets and deposition of supplementary data; and a completely redesigned web interface, with enhanced search and filtering capabilities.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Bioensaio , Publicações Periódicas como Assunto , Interface Usuário-Computador
5.
J Bacteriol ; 192(2): 553-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897649

RESUMO

In eubacteria, stalled ribosomes are rescued by a conserved quality-control mechanism involving transfer-messenger RNA (tmRNA) and its protein partner, SmpB. Mimicking a tRNA, tmRNA enters stalled ribosomes, adds Ala to the nascent polypeptide, and serves as a template to encode a short peptide that tags the nascent protein for destruction. To further characterize the tagging process, we developed two genetic selections that link tmRNA activity to cell death. These negative selections can be used to identify inhibitors of tagging or to identify mutations in key residues essential for ribosome rescue. Little is known about which ribosomal elements are specifically required for tmRNA activity. Using these selections, we isolated rRNA mutations that block the rescue of ribosomes stalled at rare Arg codons or at the inefficient termination signal Pro-opal. We found that deletion of A1150 in the 16S rRNA blocked tagging regardless of the stalling sequence, suggesting that it inhibits tmRNA activity directly. The C889U mutation in 23S rRNA, however, lowered tagging levels at Pro-opal and rare Arg codons, but not at the 3' end of an mRNA lacking a stop codon. We concluded that the C889U mutation does not inhibit tmRNA activity per se but interferes with an upstream step intermediate between stalling and tagging. C889 is found in the A-site finger, where it interacts with the S13 protein in the small subunit (forming intersubunit bridge B1a).


Assuntos
RNA Bacteriano/genética , RNA Ribossômico/fisiologia , Ribossomos/química , Ribossomos/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Immunoblotting , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/fisiologia , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/fisiologia
6.
Plant Cell ; 18(10): 2582-92, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17028208

RESUMO

A nucleotide pyrophosphatase/phosphodiesterase (NPP) activity that catalyzes the hydrolytic breakdown of ADP-glucose (ADPG) has been shown to occur in the plastidial compartment of both mono- and dicotyledonous plants. To learn more about this enzyme, we purified two NPPs from rice (Oryza sativa) and barley (Hordeum vulgare) seedlings. Both enzymes are glycosylated, since they bind to concanavalin A, stain with periodic acid-Schiff reagent, and are digested by Endo-H. A complete rice NPP cDNA, designated as NPP1, was isolated, characterized, and overexpressed in transgenic plants displaying high ADPG hydrolytic activity. Databank searches revealed that NPP1 belongs to a functionally divergent group of plant nucleotide hydrolases. NPP1 contains numerous N-glycosylation sites and a cleavable hydrophobic signal sequence that does not match with the N-terminal part of the mature protein. Both immunocytochemical analyses and confocal fluorescence microscopy of rice cells expressing NPP1 fused with green fluorescent protein (GFP) revealed that NPP1-GFP occurs in the plastidial compartment. Brefeldin A treatment of NPP1-GFP-expressing cells prevented NPP1-GFP accumulation in the chloroplasts. Endo-H digestibility studies revealed that both NPP1 and NPP1-GFP in the chloroplast are glycosylated. Collectively, these data demonstrate the trafficking of glycosylated proteins from the endoplasmic reticulum-Golgi system to the chloroplast in higher plants.


Assuntos
Cloroplastos/enzimologia , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Oryza/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Plastídeos/enzimologia , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar , Eletroforese em Gel de Poliacrilamida , Glicosilação , Hidrólise , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/isolamento & purificação , Transporte Proteico , Pirofosfatases/isolamento & purificação
7.
Plant Cell Physiol ; 44(5): 500-9, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12773636

RESUMO

By using barley seeds, developmental changes of ADPglucose (ADPG)-producing sucrose synthase (SS) and ADPG pyrophosphorylase (AGPase) have been compared with those of UDPglucose (UDPG), ADPG, sucrose (Suc) and starch contents. Both ADPG-synthesizing SS and AGPase activity patterns were found to correlate well with those of ADPG and starch contents. Remarkably, however, maximal activities of ADPG-synthesizing SS were found to be several fold higher than those of AGPase throughout seed development, the highest rate of starch accumulation being well accounted for by SS. Kinetic analyses of SS from barley endosperms and potato tubers in the Suc cleavage direction showed similar K(m) values for ADP and UDP, whereas apparent affinity for Suc was shown to be higher in the presence of UDP than with ADP. Moreover, measurements of transglucosylation activities in starch granules incubated with purified SS, ADP and [U-(14)C]Suc revealed a low inhibitory effect of UDP. The ADPG and UDPG contents in the transgenic S-112 SS and starch deficient potato mutant [Zrenner et al. (1995) Plant J. 7: 97] were found to be 35% and 30% of those measured in wild-type plants, whereas both glucose-1-phosphate and glucose-6-phosphate contents were found to be normal as compared with those of wild-type plants. The overall results thus strongly support a novel gluconeogenic mechanism reported previously [Pozueta-Romero et al. (1999) CRIT: Rev. Plant Sci. 18: 489] wherein SS catalyses directly the de novo production of ADPG linked to starch biosynthesis in heterotrophic tissues of plants.


Assuntos
Adenosina Difosfato Glucose/biossíntese , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Solanum tuberosum/enzimologia , Amido/biossíntese , Glucose-1-Fosfato Adenililtransferase , Glucose-6-Fosfato/biossíntese , Glucosiltransferases/genética , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Dados de Sequência Molecular , Nucleotidiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Sacarose/metabolismo , Uridina Difosfato Glucose/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...