Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(22): 35552-35564, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017723

RESUMO

We theoretically develop an efficient and universal design scheme of quantum light sources based on hybrid circular Bragg grating (CBG) cavity with and without electrical contact bridges. As the proposed design scheme strongly alleviates the computational cost of numerical simulation, we present high-performance CBG designs based on the GaAs/SiO2/Au material system for emission wavelengths ranging from 900 nm to 1600 nm, covering the whole telecom O-band and C-band. All designs achieve remarkable Purcell factors surpassing a value of 26 and extraction efficiencies (into a numerical aperture of 0.8) exceeding 92% without contact bridges and 86% with contact bridges. Additionally, we show that our design approach easily deals with realistic structural constraints, such as preset thicknesses of a semiconductor membrane or SiO2 layers or with a different material system. The high design flexibility greatly supports the experimental deterministic fabrication approaches, allowing one to perform in-situ design adaptation and to integrate single quantum emitters of an inhomogeneously broadened ensemble on the same chip into wavelength-adapted structures without spectral constraints, which highly increase the yield of quantum device fabrication.

2.
Nano Lett ; 23(22): 10532-10537, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917860

RESUMO

Key requirements for quantum plasmonic nanocircuits are reliable single-photon sources, high coupling efficiency to the plasmonic structures, and low propagation losses. Self-assembled epitaxially grown GaAs quantum dots are close to ideal as stable, bright, and narrowband single-photon emitters. Likewise, wet-chemically grown monocrystalline silver nanowires are among the best plasmonic waveguides. However, large propagation losses of surface plasmons on the high-index GaAs substrate prevent their direct combination. Here, we show by experiment and simulation that the best overall performance of the quantum plasmonic nanocircuit based on these building blocks is achieved in the intermediate field regime with an additional spacer layer between the quantum dot and the plasmonic waveguide. High-resolution cathodoluminescence measurements allow a precise determination of the coupling distance and support a simple analytical model to explain the overall performance. The coupling efficiency is increased up to four times by standing wave interference near the end of the waveguide.

3.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215325

RESUMO

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

4.
Opt Express ; 30(12): 20225-20240, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224773

RESUMO

In this work, we determine the temperature dependence of refractive indices of In0.53Al0.1Ga0.37As and Al0.9Ga0.1As semiconductor alloys at telecommunication wavelengths in the range from room temperature down to 10 K. For that, we measure the temperature-dependent reflectance of two structures: with an Al0.9Ga0.1As/GaAs distributed Bragg reflector (DBR) designed for 1.3 µm and with an In0.53Al0.1Ga0.37As/InP DBR designed for 1.55 µm. The obtained experimental results are compared to DBR reflectivity spectra calculated within the transfer matrix method to determine refractive index values. We further show that changes due to the thermal expansion of the DBR layers are negligible for our method.

5.
Opt Express ; 30(10): 15913-15928, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221446

RESUMO

We perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%. Our work provides objectified comparability of different fiber-coupled single-photon sources and proposes optimized geometries for the realization of practical and highly efficient quantum dot single-photon sources.

6.
Nanoscale ; 14(39): 14529-14536, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36155719

RESUMO

We report on the deterministic fabrication of quantum devices aided by machine-learning-based image processing. The goal of the work is to demonstrate that pattern recognition based on specifically trained machine learning (ML) algorithms and applying it to luminescence maps can strongly enhance the capabilities of modern fabrication technologies that rely on a precise determination of the positions of quantum emitters like, for instance, in situ lithography techniques. In the present case, we apply in situ electron beam lithography (EBL) to deterministically integrate single InGaAs quantum dots (QDs) into circular Bragg grating resonators with increased photon extraction efficiency (PEE). In this nanotechnology platform, suitable QDs are selected by 2D cathodoluminescence maps before EBL of the nanoresonators aligned to the selected emitters is performed. Varying the electron beam dose of cathodoluminescence (CL) mapping, we intentionally change the signal-to-noise ratio of the CL maps to mimic different brightness of the emitters and to train the ML algorithm. ML-based image processing is then used to denoise the images for reliable and accurate QD position retrieval. This way, we achieve a significant enhancement in the PEE and position accuracy, leading to more than one order increase of sensitivity in ML-enhanced in situ EBL. Overall, this demonstrates the high potential of ML-based image processing in deterministic nanofabrication which can be very attractive for the fabrication of bright quantum light sources based on emitters with low luminescence yield in the future.

7.
Opt Express ; 29(15): 23500-23507, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614614

RESUMO

We apply an InGaAs quantum dot based single-photon source for the absolute detection efficiency calibration of a silicon single-photon avalanche diode operating in Geiger mode. The single-photon source delivers up to (2.55 ± 0.02) × 106 photons per second inside a multimode fiber at the wavelength of 929.8 nm for above-band pulsed excitation with a repetition rate of 80 MHz. The purity of the single-photon emission, expressed by the value of the 2nd order correlation function g(2)(τ = 0), is between 0.14 and 0.24 depending on the excitation power applied to the quantum dot. The single-photon flux is sufficient to be measured with an analog low-noise reference detector, which is traceable to the national standard for optical radiant flux. The measured detection efficiency using the single-photon source remains constant within the measurement uncertainty for different photon fluxes. The corresponding weighted mean thus amounts to 0.3263 with a standard uncertainty of 0.0022.

8.
Sci Rep ; 10(1): 21816, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311592

RESUMO

Single-photon sources are key building blocks in most of the emerging secure telecommunication and quantum information processing schemes. Semiconductor quantum dots (QD) have been proven to be the most prospective candidates. However, their practical use in fiber-based quantum communication depends heavily on the possibility of operation in the telecom bands and at temperatures not requiring extensive cryogenic systems. In this paper we present a temperature-dependent study on single QD emission and single-photon emission from metalorganic vapour-phase epitaxy-grown InGaAs/GaAs QDs emitting in the telecom O-band at 1.3 µm. Micro-photoluminescence studies reveal that trapped holes in the vicinity of a QD act as reservoir of carriers that can be exploited to enhance photoluminescence from trion states observed at elevated temperatures up to at least 80 K. The luminescence quenching is mainly related to the promotion of holes to higher states in the valence band and this aspect must be primarily addressed in order to further increase the thermal stability of emission. Photon autocorrelation measurements yield single-photon emission with a purity of [Formula: see text] up to 50 K. Our results imply that these nanostructures are very promising candidates for single-photon sources at elevated (e.g., Stirling cryocooler compatible) temperatures in the telecom O-band and highlight means for improvements in their performance.

9.
J Phys Condens Matter ; 32(15): 153003, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31791035

RESUMO

The controlled generation of non-classical states of light is a challenging task at the heart of quantum optics. Aside from the mere spirit of science, the related research is strongly driven by applications in photonic quantum technologies, including the fields of quantum communication, quantum computation, and quantum metrology. In this context, the realization of integrated solid-state-based quantum-light sources is of particular interest, due to the prospects for scalability and device integration. This topical review focuses on solid-state quantum-light sources which are fabricated in a deterministic fashion. In this framework we cover quantum emitters represented by semiconductor quantum dots, colour centres in diamond, and defect-/strain-centres in two-dimensional materials. First, we introduce the topic of quantum-light sources and non-classical light generation for applications in photonic quantum technologies, motivating the need for the development of scalable device technologies to push the field towards real-world applications. In the second part, we summarize material systems hosting quantum emitters in the solid-state. The third part reviews deterministic fabrication techniques and comparatively discusses their advantages and disadvantages. The techniques are classified in bottom-up approaches, exploiting the site-controlled positioning of the quantum emitters themselves, and top-down approaches, allowing for the precise alignment of photonic microstructures to pre-selected quantum emitters. Special emphasis is put on the progress achieved in the development of in situ techniques, which significantly pushed the performance of quantum-light sources towards applications. Additionally, we discuss hybrid approaches, exploiting pick-and-place techniques or wafer-bonding. The fourth part presents state-of-the-art quantum-dot quantum-light sources based on the fabrication techniques presented in the previous sections, which feature engineered functionality and enhanced photon collection efficiency. The article closes by highlighting recent applications of deterministic solid-state-based quantum-light sources in the fields of quantum communication, quantum computing, and quantum metrology, and by discussing future perspectives in the field of solid-state quantum-light sources.

10.
Opt Express ; 27(25): 36824-36837, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873454

RESUMO

We present a design study of quantum light sources based on hybrid circular Bragg gratings (CBGs) for emission wavelengths in the telecom O-band. The evaluated CBG designs show photon extraction efficiencies > 95% and Purcell factors close to 30. Using simulations based on the finite element method, and considering the influence of possible fabrication imperfections, we identify optimized high-performance CBG designs which are robust against structural aberrations. In particular, full 3D simulations reveal that the designs show robustness regarding lateral deviations of the emitter position in the device well within reported positioning accuracies of deterministic fabrication technologies. Furthermore, we investigate the coupling of the evaluated hybrid CBG designs to single-mode optical fibers, which is particularly interesting for the development of practical quantum light sources. We obtain coupling efficiencies of up to 77% for off-the-shelf fibers, and again proof robustness against fabrication imperfections. Our results show prospects for the fabrication of close-to-ideal fiber-coupled quantum light sources for long distance quantum communication.

11.
Opt Express ; 27(19): 26772-26785, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674552

RESUMO

We present an effective method for direct fiber coupling of a quantum dot (QD) that is deterministically incorporated into a cylindrical mesa. For precise positioning of the fiber with respect to the QD-mesa, we use a scanning procedure relying on interference of light reflected back from the fiber end-face and the top surface of the mesa, applicable for both single-mode and multi-mode fibers. The central part of the fiber end-face is etched to control the required distance between the top surface of the mesa and the fiber core. Emission around 1260 nm from a fiber-coupled InGaAs/GaAs QD is demonstrated and its stability is proven over multiple cooling cycles. Moreover, a single photon character of emission from such system for a line emitting above 1200 nm is proven experimentally by photon autocorrelation measurements with an obtained value of the second order correlation function at zero time-delay well below 0.5.

12.
Nano Lett ; 19(10): 7164-7172, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31470692

RESUMO

Silicon photonics enables scaling of quantum photonic systems by allowing the creation of extensive, low-loss, reconfigurable networks linking various functional on-chip elements. Inclusion of single quantum emitters onto photonic circuits, acting as on-demand sources of indistinguishable photons or single-photon nonlinearities, may enable large-scale chip-based quantum photonic circuits and networks. Toward this, we use low-temperature in situ electron-beam lithography to deterministically produce hybrid GaAs/Si3N4 photonic devices containing single InAs quantum dots precisely located inside nanophotonic structures, which act as efficient, Si3N4 waveguide-coupled on-chip, on-demand single-photon sources. The precise positioning afforded by our scalable fabrication method furthermore allows observation of postselected indistinguishable photons. This indicates a promising path toward significant scaling of chip-based quantum photonics, enabled by large fluxes of indistinguishable single-photons produced on-demand, directly on-chip.

13.
Opt Express ; 26(7): 8479-8492, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715814

RESUMO

We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficiency of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.

14.
Nano Lett ; 18(4): 2336-2342, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557665

RESUMO

The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g(2)(0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

15.
Sci Rep ; 8(1): 1340, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358583

RESUMO

In this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a monolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment and epoxide adhesive bonding. The rigidly coupled fiber-emitter assembly is integrated in a compact Stirling cryocooler with a base temperature of 35 K. We benchmark our practical quantum device via photon auto-correlation measurements revealing g(2)(0) = 0.07 ± 0.05 under continuous-wave excitation and we demonstrate triggered non-classical light at a repetition rate of 80 MHz. The long-term stability of our quantum light source is evaluated by endurance tests showing that the fiber-coupled quantum dot emission is stable within 4% over several successive cool-down/warm-up cycles. Additionally, we demonstrate non-classical photon emission for a user-intervention-free 100-hour test run and stable single-photon count rates up to 11.7 kHz with a standard deviation of 4%.

16.
ACS Photonics ; 4(6): 1327-1332, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28670600

RESUMO

Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources.

17.
Phys Rev Lett ; 118(23): 233601, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644636

RESUMO

The two-photon dressing of a "three-level ladder" system, here the ground state, the exciton, and the biexciton of a semiconductor quantum dot, leads to new eigenstates and allows one to manipulate the time ordering of the paired photons without unitary postprocessing. We show that, after spectral postselection of the single dressed states, the time ordering of the cascaded photons can be removed or conserved. Our joint experimental and theoretical study demonstrates the high potential of a "ladder" system to be a versatile source of orthogonally polarized, bunched or antibunched pairs of photons.

18.
Nanotechnology ; 27(19): 195301, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27023850

RESUMO

We report on a 3D electron beam lithography (EBL) technique using polymethyl methacrylate (PMMA) in the negative-tone regime as a resist. First, we briefly demonstrate 3D EBL at room temperature. Then we concentrate on cryogenic temperatures where PMMA exhibits a low contrast, which allows for straightforward patterning of 3D nano- and microstructures. However, conventional EBL patterning at cryogenic temperatures is found to cause severe damage to the microstructures. Through an extensive study of lithography parameters, exposure techniques, and processing steps we deduce a hypothesis for the cryogenic PMMA's structural evolution under electron beam irradiation that explains the damage. In accordance with this hypothesis, a two step lithography technique involving a wide-area pre-exposure dose slightly smaller than the onset dose is applied. It enables us to demonstrate a >95% process yield for the low-temperature fabrication of 3D microstructures.

19.
ACS Photonics ; 3(12): 2461-2466, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28713845

RESUMO

Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs), achieving their efficient coupling to the external light field. This enables performing four-wave mixing microspectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the line shape of the phonon-assisted PL using realistic quantum dot geometries.

20.
Rev Sci Instrum ; 86(7): 073903, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233395

RESUMO

We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...