Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771013

RESUMO

In June 2023, UKHSA surveillance systems detected an outbreak of severe gastrointestinal symptoms caused by a rare serotype of Shiga toxin-producing Escherichia coli, STEC O183:H18. There were 26 cases aged 6 months to 74 years (42 % cases were aged 0-9 years), distributed across the UK with onset dates range between 22 May 2023 and 4 July 2023. The epidemiological and food chain investigations were inconclusive, although meat products made from beef mince were implicated as a potential vehicle. The outbreak strain belonged to sequence type (ST) 657 and harboured a Shiga toxin (stx) subtype stx2a located on a prophage that was unique in the UKHSA stx-encoding bacteriophage database. Plasmid encoded, putative virulence genes subA, ehxA, saa, iha, lpfA and iss were detected, however, the established STEC virulence genes involved in attachment to the gut mucosa (eae and aggR) were absent. The acquisition of stx across the global population structure of ST657 appeared to correspond with the presence of subA, ehxA, saa, iha, lpfA and iss. During the outbreak investigation, we used long read sequencing to characterise the plasmid and prophage content of this atypical STEC, to look for evidence to explain its recent emergence. Although we were unable to determine source and transmission route of the outbreak strain, the genomic analysis revealed potential clues as to how novel strains for STEC evolve. With the implementation of PCR capable of detecting all STEC, and genome sequencing for typing and virulence profiling, we have the tools to enable us to monitor the changing landscape of STEC. Improvements in the standardised collection of epidemiological data and trace-back strategies within the food industry, will ensure we have a surveillance system capable of alerting us to emerging threats to public health.


Assuntos
Surtos de Doenças , Infecções por Escherichia coli , Escherichia coli Shiga Toxigênica , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Humanos , Reino Unido/epidemiologia , Idoso , Plasmídeos/genética , Adulto , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Criança , Adolescente , Masculino , Fatores de Virulência/genética , Feminino , Genômica , Prófagos/genética , Adulto Jovem , Genoma Bacteriano
2.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299580

RESUMO

Introduction. Shiga toxin-producing Escherichia coli (STEC) belong to a diverse group of gastrointestinal pathogens. The pathogenic potential of STEC is enhanced by the presence of the pathogenicity island called the Locus of Enterocyte Effacement (LEE), including the intimin encoding gene eae.Gap statement. STEC serotypes O128:H2 (Clonal Complex [CC]25), O91:H14 (CC33), and O146:H21 (CC442) are consistently in the top five STEC serotypes isolated from patients reporting gastrointestinal symptoms in England. However, they are eae/LEE-negative and perceived to be a low risk to public health, and we know little about their microbiology and epidemiology.Aim. We analysed clinical outcomes and genome sequencing data linked to patients infected with LEE-negative STEC belonging to CC25 (O128:H2, O21:H2), CC33 (O91:H14) and, and CC442 (O146:H21, O174:H21) in England to assess the risk to public health.Results. There was an almost ten-fold increase between 2014 and 2022 in the detection of all STEC belonging to CC25, CC33 and CC442 (2014 n=38, 2022 n=336), and a total of 1417 cases. There was a higher proportion of female cases (55-70 %) and more adults than children, with patients aged between 20-40 and >70 most at risk across the different serotypes. Symptoms were consistent across the three dominant serotypes O91:H14 (CC33), O146:H21 (CC442) and O128:H2 (CC25) (diarrhoea >75 %; bloody diarrhoea 25-32 %; abdominal pain 64-72 %; nausea 37-45 %; vomiting 10-24 %; and fever 27-30 %). Phylogenetic analyses revealed multiple events of acquisition and loss of different stx-encoding prophage. Additional putative virulence genes were identified including iha, agn43 and subA.Conclusions. Continued monitoring and surveillance of LEE-negative STEC infections is essential due to the increasing burden of infectious intestinal disease, and the risk that highly pathogenic strains may emerge following acquisition of the Shiga toxin subtypes associated with the most severe clinical outcomes.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Adulto , Criança , Humanos , Feminino , Adulto Jovem , Saúde Pública , Filogenia , Enterócitos , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Toxina Shiga/genética , Diarreia , Fosfoproteínas
3.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294302

RESUMO

Introduction. Shiga toxin-producing Escherichia coli (STEC) belong to a diverse group of gastrointestinal pathogens defined by the presence of Shiga toxin genes (stx) of which there are at least ten subtypes (Stx1a-Stx1d and Stx2a-Stx2g).Gap Statement. Initially thought to be associated with mild symptoms, more recently STEC encoding stx2f have been isolated from cases of haemolytic uraemic syndrome (HUS) and the clinical significance and public health burden require further investigation.Aim. We analysed clinical outcomes and genome-sequencing data linked to patients infected with STEC encoding-stx2f in England to assess the risk to public health.Methodology. One hundred and twelve E. coli (n=58 isolates encoded stx2f; n=54 isolates E. coli belonging to CC122 or CC722 that had eae but were negative for stx) isolated from patients' faecal specimens between 2015 and 2022 were genome sequenced and linked to epidemiological and clinical outcome data. All isolates were investigated for the presence of virulence genes and a maximum-likelihood phylogeny of isolates belonging to CC122 and CC722 was constructed.Results. There were 52 cases infected with STEC harbouring stx2f between 2015 and 2022, with the majority identified in 2022. Most cases resided in the North of England (n=39/52, 75 %), were female (n=31, 59.6 %) and/or aged five and under (n=29, 55.8 %). Clinical outcome data were available for 40/52 cases (76.9 %) and 7/40(17.5 %) were diagnosed with STEC-HUS. In the two most common clonal complexes, CC122 and CC722, the presence of the stx2f-encoding prophage correlated with the presence of additional virulence genes, astA, bfpA and cdt, located on an 85kbp IncFIB plasmid.Conclusions. Certain serotypes of E. coli harbouring stx2f cause severe clinical outcomes, including STEC-HUS. Public health advice and possible interventions are limited, as little is known about the animal and environmental reservoirs and transmission routes. We recommend more comprehensive and standardized collection of microbiological and epidemiological data, and routine sharing of sequencing data between public health agencies worldwide.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Animais , Humanos , Feminino , Masculino , Toxina Shiga/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Virulência , Proteínas de Escherichia coli/genética , Inglaterra/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia
4.
J Infect ; 86(6): 552-562, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060924

RESUMO

OBJECTIVES: We aimed to describe the genomic epidemiology of the foodborne gastrointestinal pathogen, Shiga toxin-producing Escherichia coli (STEC) serotype O26:H11 belonging to clonal complex 29 (CC29) in England. METHODS: Between 01 January 2014 and 31 December 2021, 834 human isolates belonging to CC29 were sequenced at the UK Health Security Agency, and the genomic data was integrated with epidemiological data. RESULTS: Diagnoses of STEC O26:H11 in England have increased each year from 19 in 2014 to 144 in 2021. Most isolates had the Shiga toxin subtype profiles stx1a (47%), stx1a,stx2a (n = 24%) or stx2a (n = 28%). Most cases were female (57%), and the highest proportion of cases belonged to the 0-5 age group (38%). Clinical symptoms included diarrhoea (93%), blood-stained stool (48%), and abdominal pain (74%). Haemolytic Uraemic Syndrome (HUS) was diagnosed in 40/459 (9%) cases and three children died. All isolates causing STEC-HUS had stx2a either alone (n = 33) or in combination with stx1a (n = 7). CONCLUSIONS: STEC O26:H11 are a clinically significant, emerging threat to public health in England. Determining the true incidence and prevalence is challenging due to inconsistent national surveillance strategies. Improved diagnostics and surveillance algorithms are required to monitor the true burden, detect outbreaks and to implement effective interventions.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Criança , Humanos , Feminino , Masculino , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/epidemiologia , Toxina Shiga , Diarreia/epidemiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Inglaterra/epidemiologia
5.
J Med Microbiol ; 71(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35984744

RESUMO

Introduction. Shiga toxin-producing Escherichia coli (STEC) O157:H7 has been the most clinically significant STEC serotype in the UK for over four decades. Over the last 10 years we have observed a decrease in STEC O157:H7 and an increase in non-O157 STEC serotypes, such as O145:H28.Gap Statement. Little is known about the microbiology and epidemiology of STEC belonging to CC32 (including O145:H28) in the UK. The aim of this study was to integrate genomic data with patient information to gain a better understanding of the virulence, disease severity, epidemic risk assessment and population structure of this clinically significant clonal complex.Methodology. Isolates of E. coli belonging to CC32 (n=309) in the archives of public health agencies in the UK and Ireland were whole-genome-sequenced, virulence-profiled and integrated with enhanced surveillance questionnaire (ESQ) data, including exposures and disease severity.Results. Overall, diagnoses of STEC belonging to CC32 (290/309, 94 %) in the UK have increased every year since 2014. Most cases were female (61 %), and the highest proportion of cases belonged to the 0-4 age group (53/211,25 %). The frequency of symptoms of diarrhoea (92 %), abdominal pain (84 %), blood in stool (71 %) and nausea (51 %) was similar to that reported in cases of STEC O157:H7, although cases of STEC CC32 were more frequently admitted to hospital (STEC CC32 48 % vs O157:H7  34 %) and/or developed haemolytic uraemic syndrome (HUS) (STEC CC32 9 % vs O157:H7 4 %).The majority of STEC isolates (268/290, 92 %) had the stx2a/eae virulence gene combination, most commonly associated with progression to STEC HUS. There was evidence of person-to-person transmission and small, temporally related, geographically dispersed outbreaks, characteristic of foodborne outbreaks linked to nationally distributed products.Conclusion. We recommend more widespread use of polymerase chain reaction (PCR) for the detection of all STEC serogroups, the development of consistent strategies for the follow-up testing of PCR-positive faecal specimens, the implementation of more comprehensive and standardized collection of epidemiological data, and routine sharing of sequencing data between public health agencies worldwide.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Humanos , Irlanda/epidemiologia , Masculino , Sorogrupo , Escherichia coli Shiga Toxigênica/genética , Reino Unido/epidemiologia
6.
J Med Microbiol ; 70(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34919511

RESUMO

Introduction. Shiga toxin-producing Escherichia coli (STEC) is a zoonotic, foodborne gastrointestinal pathogen that has the potential to cause severe clinical outcomes, including haemolytic uraemic syndrome (HUS). STEC-HUS is the leading cause of renal failure in children and can be fatal. Over the last decade, STEC clonal complex 165 (CC165) has emerged as a cause of STEC-HUS.Gap Statement. There is a need to understand the pathogenicity and prevalence of this emerging STEC clonal complex in the UK, to facilitate early diagnosis, improve clinical management, and prevent and control outbreaks.Aim. The aim of this study was to characterize CC165 through identification of virulence factors (VFs) and antimicrobial resistance (AMR) determinants in the genome and to integrate the genome data with the available epidemiological data to better understand the incidence and pathogenicity of this clonal complex in the UK.Methodology. All isolates belonging to CC165 in the archives at the UK public health agencies were sequenced and serotyped, and the virulence gene and AMR profiles were derived from the genome using PHE bioinformatics pipelines and the Centre for Genomic Epidemiology virulence database.Results. There were 48 CC165 isolates, of which 43 were STEC, four were enteropathogenic E. coli (EPEC) and one E. coli. STEC serotypes were predominately O80:H2 (n=28), and other serotypes included O45:H2 (n=9), O55:H9 (n=4), O132:H2 (n=1) and O180:H2 (n=1). All but one STEC isolate had Shiga toxin (stx) subtype stx2a or stx2d and 47/48 isolates had the eae gene encoding intimin involved in the intimate attachment of the bacteria to the human gut mucosa. We detected extra-intestinal virulence genes including those associated with iron acquisition (iro) and serum resistance (iss), indicating that this pathogen has the potential to translocate to extra-intestinal sites. Unlike other STEC clonal complexes, a high proportion of isolates (93%, 40/43) were multidrug-resistant, including resistance to aminoglycosides, beta-lactams, chloramphenicol, sulphonamides, tetracyclines and trimethoprim.Conclusion. The clinical significance of this clonal complex should not be underestimated. Exhibiting high levels of AMR and a combination of STEC and extra-intestinal pathogenic E. coli (ExPEC) virulence profiles, this clonal complex is an emerging threat to public health.


Assuntos
Infecções por Escherichia coli/epidemiologia , Escherichia coli Shiga Toxigênica , Farmacorresistência Bacteriana/genética , Escherichia coli Enteropatogênica , Infecções por Escherichia coli/microbiologia , Genômica , Humanos , Escherichia coli Shiga Toxigênica/genética , Reino Unido/epidemiologia , Virulência/genética , Fatores de Virulência/genética
7.
Cell Host Microbe ; 29(11): 1620-1633.e8, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597593

RESUMO

Temperate phages are pervasive in bacterial genomes, existing as vertically inherited islands termed prophages. Prophages are vulnerable to predation of their host bacterium by exogenous phages. Here, we identify BstA, a family of prophage-encoded phage-defense proteins in diverse Gram-negative bacteria. BstA localizes to sites of exogenous phage DNA replication and mediates abortive infection, suppressing the competing phage epidemic. During lytic replication, the BstA-encoding prophage is not itself inhibited by BstA due to self-immunity conferred by the anti-BstA (aba) element, a short stretch of DNA within the bstA locus. Inhibition of phage replication by distinct BstA proteins from Salmonella, Klebsiella, and Escherichia prophages is generally interchangeable, but each possesses a cognate aba element. The specificity of the aba element ensures that immunity is exclusive to the replicating prophage, preventing exploitation by variant BstA-encoding phages. The BstA protein allows prophages to defend host cells against exogenous phage attack without sacrificing the ability to replicate lytically.


Assuntos
Bacteriófagos , Prófagos , Bacteriófagos/genética , Genoma Bacteriano , Prófagos/genética , Salmonella
8.
Viruses ; 13(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804216

RESUMO

In recent years, novel lineages of invasive non-typhoidal Salmonella (iNTS) serovars Typhimurium and Enteritidis have been identified in patients with bloodstream infection in Sub-Saharan Africa. Here, we isolated and characterised 32 phages capable of infecting S. Typhimurium and S. Enteritidis, from water sources in Malawi and the UK. The phages were classified in three major phylogenetic clusters that were geographically distributed. In terms of host range, Cluster 1 phages were able to infect all bacterial hosts tested, whereas Clusters 2 and 3 had a more restricted profile. Cluster 3 contained two sub-clusters, and 3.b contained the most novel isolates. This study represents the first exploration of the potential for phages to target the lineages of Salmonella that are responsible for bloodstream infections in Sub-Saharan Africa.


Assuntos
Bacteriófagos , Infecções por Salmonella/terapia , Salmonella enteritidis/virologia , Salmonella typhimurium/virologia , Sepse/microbiologia , Humanos , Malaui/epidemiologia , Infecções por Salmonella/virologia , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Reino Unido/epidemiologia , Microbiologia da Água
9.
Nat Microbiol ; 6(3): 327-338, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33349664

RESUMO

Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.


Assuntos
Evolução Molecular , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Sepse/microbiologia , África/epidemiologia , Farmacorresistência Bacteriana , Variação Genética , Genoma Bacteriano/genética , Genótipo , Humanos , Fenótipo , Filogenia , Plasmídeos/genética , Pseudogenes , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Sepse/epidemiologia , Sepse/transmissão , Virulência
10.
Infect Immun ; 87(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262982

RESUMO

In recent years nontyphoidal Salmonella has emerged as one of the pathogens most frequently isolated from the bloodstream in humans. Only a small group of Salmonella serovars cause this systemic infection, known as invasive nontyphoidal salmonellosis. Here, we present a focused minireview on Salmonella enterica serovar Panama, a serovar responsible for invasive salmonellosis worldwide. S Panama has been linked with infection of extraintestinal sites in humans, causing septicemia, meningitis, and osteomyelitis. The clinical picture is often complicated by antimicrobial resistance and has been associated with a large repertoire of transmission vehicles, including human feces and breast milk. Nonhuman sources of S Panama involve reptiles and environmental reservoirs, as well as food animals, such as pigs. The tendency of S Panama to cause invasive disease may be linked to certain serovar-specific genetic factors.


Assuntos
Infecções por Salmonella/microbiologia , Salmonella enterica/patogenicidade , Farmacorresistência Bacteriana Múltipla , Saúde Global , Humanos , Infecções por Salmonella/transmissão , Salmonella enterica/genética , Virulência
11.
PLoS Negl Trop Dis ; 13(6): e0007169, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31163033

RESUMO

BACKGROUND: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. METHODOLOGY/PRINCIPLE FINDINGS: We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. SIGNIFICANCE: We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis.


Assuntos
Variação Genética , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Serpentes/microbiologia , Animais , Prevalência , Sorogrupo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...