Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4185-4197, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38349033

RESUMO

Zur is a Fur-family metalloregulator that is widely used to control zinc homeostasis in bacteria. In Streptomyces coelicolor, Zur (ScZur) acts as both a repressor for zinc uptake (znuA) gene and an activator for zinc exporter (zitB) gene. Previous structural studies revealed three zinc ions specifically bound per ScZur monomer; a structural one to allow dimeric architecture and two regulatory ones for DNA-binding activity. In this study, we present evidence that Zur contains a fourth specific zinc-binding site with a key histidine residue (H36), widely conserved among actinobacteria, for regulatory function. Biochemical, genetic, and calorimetric data revealed that H36 is critical for hexameric binding of Zur to the zitB zurbox and further binding to its upstream region required for full activation. A comprehensive thermodynamic model demonstrated that the DNA-binding affinity of Zur to both znuA and zitB zurboxes is remarkably enhanced upon saturation of all three regulatory zinc sites. The model also predicts that the strong coupling between zinc binding and DNA binding equilibria of Zur drives a biphasic activation of the zitB gene in response to a wide concentration change of zinc. Similar mechanisms may be pertinent to other metalloproteins, expanding their response spectrum through binding multiple regulatory metals.


Assuntos
Proteínas de Bactérias , Ligação Proteica , Streptomyces coelicolor , Zinco , Zinco/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sítios de Ligação , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Histidina/metabolismo , Histidina/química
2.
J Microbiol ; 60(4): 387-394, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344189

RESUMO

A reducing system of SoxR, a regulator of redox-active molecules, was identified as rsxABCDGE gene products and RseC in Escherichia coli through genetic studies. We found that ApbE was an additional component of the reducer system. Bacterial two hybrid analysis revealed that these proteins indeed had multiple interactions among themselves. RseC and RsxB formed the core of the complex, interacting with more than five other components. RsxC, the only cytoplasmic component of the system, interacted with SoxR. It might be linked with the rest of the complex via RsxB. Membrane fractions containing the wild type complex but not the mutant complex reduced purified SoxR using NADH as an electron source. These results suggest that Rsx genes, RseC, and ApbE can form a complex using NAD(P)H to reduce SoxR.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
mBio ; 13(2): e0042522, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357210

RESUMO

The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode. IMPORTANCE A widely investigated mode of antibiotic resistance occurs via mutations and/or by horizontal acquisition of resistance genes. In addition to this acquired resistance, most bacteria exhibit intrinsic resistance as an inducible and adaptive response to different classes of antibiotics. Increasing attention has been paid recently to intrinsic resistance mechanisms because this may provide novel therapeutic targets that help rejuvenate the efficacy of the current antibiotic regimen. In this study, we demonstrate that iron promotes the intrinsic resistance of aerobic actinomycetes Streptomyces coelicolor and Mycobacterium smegmatis against bactericidal antibiotics. A surprising role of iron to increase respiration, especially in a mode of using less oxygen, appears a fitting strategy to cope with bactericidal antibiotics known to kill bacteria through oxidative damage. This provides new insights into developing antimicrobial treatments based on the availability of iron and oxygen.


Assuntos
Actinobacteria , Streptomyces coelicolor , Actinobacteria/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Ferro/metabolismo , Oxigênio/metabolismo , Respiração , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
4.
Mol Microbiol ; 117(1): 179-192, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687261

RESUMO

WhiB7/WblC is a transcriptional factor of actinomycetes conferring intrinsic resistance to multiple translation-inhibitory antibiotics. It positively autoregulates its own transcription in response to the same antibiotics. The presence of a uORF and a potential Rho-independent transcription terminator in the 5' leader region has suggested a possibility that the whiB7/wblC gene is regulated via a uORF-mediated transcription attenuation. However, experimental evidence for the molecular mechanism to explain how antibiotic stress suppresses the attenuator, if any, and induces transcription of the whiB7/wblC gene has been lacking. Here we report that the 5' leader sequences of the whiB7/wblC genes in sub-clades of actinomycetes include conserved antiterminator RNA structures. We confirmed that the putative antiterminator in the whiB7/wblC leader sequences of both Streptomyces and Mycobacterium indeed suppresses Rho-independent transcription terminator and facilitates transcription readthrough, which is required for WhiB7/WblC-mediated antibiotic resistance. The antibiotic-mediated suppression of the attenuator can be recapitulated by amino acid starvation, indicating that translational inhibition of uORF by multiple signals is a key to induce whiB7/wblC expression. Our findings of a mechanism leading to intrinsic antibiotic resistance could provide an alternative to treat drug-resistant mycobacteria.


Assuntos
Regiões 5' não Traduzidas/genética , Actinobacteria/genética , Antibacterianos/farmacocinética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium/genética , Streptomyces coelicolor/genética , Actinobacteria/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Mycobacterium/fisiologia , Ribossomos/metabolismo , Streptomyces coelicolor/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Mol Microbiol ; 117(2): 539-550, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927290

RESUMO

σR (SigR) is an alternative sigma factor that enables gene expression in Streptomyces coelicolor to cope with thiol oxidation and antibiotic stresses. Its activity is repressed by a zinc-containing anti-sigma (ZAS) factor RsrA that senses thiol oxidants and electrophiles. Inactivation of RsrA by disulfide formation has been well studied. Here we investigated another pathway of RsrA inactivation by electrophiles. Mass spectrometry revealed alkylation of RsrA in vivo by N-ethylmaleimide (NEM) at C61 and C62 located in the C-terminal loop. Substitution mutation (C61S/C62S) in RsrA decreased the induction of σR target genes by electrophiles and made cells more sensitive to electrophiles. In contrast to stable protein of oxidized RsrA, alkylated RsrA is subjected to degradation partly mediated by ClpP proteases. RsrA2, a redox-sensitive homolog of RsrA in S. coelicolor lacking cysteine in the terminal loop, did not respond to electrophiles. However, redox-sensitive RsrA homologs in other Actinobacteria also harboring terminal loop cysteines all responded to electrophiles. These results indicate that the activity of RsrA can be modulated via cysteine alkylation, apart from disulfide formation of zinc-coordinating cysteines. This pathway expands the spectrum of signals that the σR -RsrA system can sense and reveals another intricate regulatory layer for optimal survival of Actinobacteria.


Assuntos
Actinobacteria , Fator sigma , Actinobacteria/genética , Alquilação , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Oxirredução , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo
6.
J Microbiol ; 59(12): 1083-1091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34865197

RESUMO

CatR, a peroxide-sensing transcriptional repressor of Fur family, can de-repress the transcription of the catA gene encoding catalase upon peroxide stress in Streptomyces coelicolor. Since CatR-regulated genes other than catA and its own gene catR have not been identified in detail, the understanding of the role of CatR regulon is very limited. In this study, we performed transcriptomic analysis to identify genes influenced by both ΔcatR mutation and hydrogen peroxide treatment. Through ChIP-qPCR and other analyses, a new consensus sequence was found in CatR-responsive promoter region of catR gene and catA operon for direct regulation. In addition, vtlA (SCO2027) and SCO4983 were identified as new members of the CatR regulon. Expression levels of iron uptake genes were reduced by hydrogen peroxide and a DmdR1 binding sequence was identified in promoters of these genes. The increase in free iron by hydrogen peroxide was thought to suppress the iron import system by DmdR1. A putative exporter protein VtlA regulated by CatR appeared to reduce intracellular iron to prevent oxidative stress. The name vtlA (VIT1-like transporter) was proposed for iron homeostasis related gene SCO2027.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Catalase/genética , Catalase/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Homeostase , Peróxido de Hidrogênio/metabolismo , Óperon , Estresse Oxidativo , Regiões Promotoras Genéticas , Regulon , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Transcrição Gênica
7.
J Microbiol ; 59(12): 1075-1082, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34705258

RESUMO

Aconitase, a highly conserved protein across all domains of life, functions in converting citrate to isocitrate in the tricarboxylic acid cycle. Cytosolic aconitase is also known to act as an iron regulatory protein in mammals, binding to the RNA hairpin structures known as iron-responsive elements within the untranslated regions of specific RNAs. Aconitase-2 (Aco2) in fission yeast is a fusion protein consisting of an aconitase and a mitochondrial ribosomal protein, bL21, residing not only in mitochondria but also in cytosol and the nucleus. To investigate the role of Aco2 in the nucleus and cytoplasm of fission yeast, we analyzed the transcriptome of aco2ΔN mutant that is deleted of nuclear localization signal (NLS). RNA sequencing revealed that the aco2ΔN mutation caused increase in mRNAs encoding iron uptake transporters, such as Str1, Str3, and Shu1. The half-lives of mRNAs for these genes were found to be significantly longer in the aco2ΔN mutant than the wild-type strain, suggesting the role of Aco2 in mRNA turnover. The three conserved cysteines required for the catalytic activity of aconitase were not necessary for this role. The UV cross-linking RNA immunoprecipitation analysis revealed that Aco2 directly bound to the mRNAs of iron uptake transporters. Aco2-mediated degradation of iron-uptake mRNAs appears to utilize exoribonuclease pathway that involves Rrp6 as evidenced by genetic interactions. These results reveal a novel role of non-mitochondrial aconitase protein in the mRNA turnover in fission yeast to fine-tune iron homeostasis, independent of regulation by transcriptional repressor Fep1.


Assuntos
Aconitato Hidratase/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , RNA Fúngico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Transporte de Cátions/metabolismo , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Exorribonucleases/genética , Exorribonucleases/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Genes Fúngicos , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regulon , Ribonucleases/genética , Ribonucleases/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética
8.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291305

RESUMO

Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/genética , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Regulon , Ribossomos/química
9.
Nucleic Acids Res ; 48(5): 2401-2411, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31970401

RESUMO

Protein lysine acetylation, one of the most abundant post-translational modifications in eukaryotes, occurs in prokaryotes as well. Despite the evidence of lysine acetylation in bacterial RNA polymerases (RNAPs), its function remains unknown. We found that the housekeeping sigma factor (HrdB) was acetylated throughout the growth of an actinobacterium, Streptomyces venezuelae, and the acetylated HrdB was enriched in the RNAP holoenzyme complex. The lysine (K259) located between 1.2 and 2 regions of the sigma factor, was determined to be the acetylated residue of HrdB in vivo by LC-MS/MS analyses. Specifically, the label-free quantitative analysis revealed that the K259 residues of all the HrdB subunits were acetylated in the RNAP holoenzyme. Using mutations that mimic or block acetylation (K259Q and K259R), we found that K259 acetylation enhances the interaction of HrdB with the RNAP core enzyme as well as the binding activity of the RNAP holoenzyme to target promoters in vivo. Taken together, these findings provide a novel insight into an additional layer of modulation of bacterial RNAP activity.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Genes Essenciais , Holoenzimas/metabolismo , Lisina/metabolismo , Fator sigma/metabolismo , Streptomyces/metabolismo , Acetilação , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/química , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
10.
FEBS J ; 287(5): 878-896, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31472097

RESUMO

Glucose limitation is a major stress condition that cells must respond to by altering their metabolism to ensure survival. Rsv1 is a zinc finger protein previously shown to be required for survival during stationary phase. In this study, we present a novel mechanism regulated by Rsv1 in the fission yeast Schizosaccharomyces pombe that is involved in altering glucose metabolic flux. We found that rsv1 gene expression is induced by Rst2 and Atf1, two transcription factors regulated by the cAMP-dependent protein kinase (PKA) pathway and the mitogen-activated protein kinase (MAPK) cascade, respectively. The downstream target genes of Rsv1 were identified by genome-wide ChIP sequencing of Rsv1-bound DNA sites and RNA sequencing analysis of Rsv1-dependent transcripts that were differentially expressed under glucose starvation. Rsv1 directly regulated the expression of at least 21 genes that mostly encode transporters and proteins related to sugar metabolism. Among these, gcd1, which encodes glucose dehydrogenase in the gluconate shunt for the pentose phosphate pathway, was most remarkably repressed by Rsv1. The defect in survival of Δrsv1 mutant under glucose starvation condition was mitigated by additional deletion of a gcd1, idn1, or a gene for a putative lactonase (SPCC16c4.10), suggesting the critical importance of downregulating the gluconate shunt and pentose phosphate pathway for long-term survival. These results show an intricate response to glucose starvation: increasing the synthesis of a transcription factor via two signal transduction pathways, which sheds light on the importance of remodeling a metabolic circuit to secure glucose for cell survival.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Western Blotting , Metabolismo dos Carboidratos/genética , Imunoprecipitação da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
11.
Mol Microbiol ; 112(2): 420-431, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31269533

RESUMO

Signal-specific activation of alternative sigma factors redirects RNA polymerase to induce transcription of distinct sets of genes conferring protection against the damage the signal and the related stresses incur. In Streptomyces coelicolor, σR (SigR), a member of ECF12 subfamily of Group IV sigma factors, responds to thiol-perturbing signals such as oxidants and electrophiles, as well as to translation-blocking antibiotics. Oxidants and electrophiles interact with and inactivate the zinc-containing anti-sigma factor, RsrA, via disulfide bond formation or alkylation of reactive cysteines, subsequently releasing σR for target gene induction. Translation-blocking antibiotics induce the synthesis of σR , via the WhiB-like transcription factor, WblC/WhiB7. Signal transduction via RsrA produces a dramatic transient response that involves positive feedback to produce more SigR as an unstable isoform σ R ' and negative feedbacks to degrade σ R ' , and reduce oxidized RsrA that subsequently sequester σR and σ R ' . Antibiotic stress brings about a prolonged response by increasing stable σR levels. The third negative feedback, which occurs via IF3, lowers the translation efficiency of the sigRp1 transcript that utilizes a non-canonical start codon. σR is a global regulator that directly activates > 100 transcription units in S. coelicolor, including genes for thiol homeostasis, protein quality control, sulfur metabolism, ribosome modulation and DNA repair. Close homologues in Actinobacteria, such as σH in Mycobacteria and Corynebacteria, show high conservation of the signal transduction pathways and target genes, thus reflecting the robustness of this type of regulation in response to redox and antibiotic stresses.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Oxirredução , Fator sigma/genética , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Estresse Fisiológico
12.
Biochem Biophys Res Commun ; 516(3): 806-811, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31255284

RESUMO

In Schizosaccharomyces pombe, there are two aconitases, Aco1 and Aco2, involved in the Krebs cycle in mitochondria. Interestingly, Aco2 is localized to nucleus as well. Here, we investigated the nuclear role of Aco2 by deleting its nuclear localization signal. The aco2ΔNLS mutation suppressed the gene-silencing defects of RNAi mutants at the centromere, where heterochromatin formation depends on RNAi pathway. In Δago1, the aco2ΔNLS mutation restored heterochromatin through elevating Chp1 binding. Aco2 physically interacted with Chp1 via the N-terminal chromodomain that binds to methylated histone H3K9. In the sub-telomeric region, where heterochromatin forms independent of RNAi pathway, the single aco2ΔNLS mutation caused extra gene silencing via elevating Chp1 binding, without increasing histone methylation. The anti-silencing effect did not require the catalytic function of aconitase. Taken together, Aco2 functions as an epigenetic regulator of gene expression, through associating with chromodomain of Chp1 to maintain heterochromatin.


Assuntos
Aconitato Hidratase/genética , Proteínas de Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Heterocromatina/química , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Aconitato Hidratase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrômero , Montagem e Desmontagem da Cromatina , DNA Fúngico/genética , DNA Fúngico/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Sinais de Localização Nuclear , Ligação Proteica , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Deleção de Sequência
13.
J Ind Microbiol Biotechnol ; 46(8): 1205-1215, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165280

RESUMO

Genomic analysis of the clavulanic acid (CA)-high-producing Streptomyces clavuligerus strains, OL13 and OR, developed through random mutagenesis revealed a frameshift mutation in the cas1 gene-encoding clavaminate synthase 1. Overexpression of the intact cas1 in S. clavuligerus OR enhanced the CA titer by approximately 25%, producing ~ 4.95 g/L of CA, over the OR strain in the flask culture. Moreover, overexpression of the pathway-specific positive regulatory genes, ccaR and claR, in the OR strain improved CA yield by approximately 43% (~ 5.66 g/L) in the flask. However, co-expression of the intact cas1 with ccaR-claR did not further improve CA production. In the 7 L fermenter culture, maximum CA production by the OR strain expressing the wild-type cas1 and ccaR-claR reached approximately 5.52 g/L and 6.01 g/L, respectively, demonstrating that reverse engineering or simple rational metabolic engineering is an efficient method for further improvement of industrial strains.


Assuntos
Ácido Clavulânico/biossíntese , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/metabolismo , Streptomyces/enzimologia , Bioengenharia , Genes Reguladores , Oxigenases de Função Mista/genética , Streptomyces/genética
14.
J Microbiol ; 57(5): 388-395, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30721456

RESUMO

Streptomycetes naturally produce a variety of secondary metabolites, in the process of physiological differentiation. Streptomyces venezuelae differentiates into spores in liquid media, serving as a good model system for differentiation and a host for exogenous gene expression. Here, we report the growth and differentiation properties of S. venezuelae ATCC-15439 in liquid medium, which produces pikromycin, along with genome-wide gene expression profile. Comparison of growth properties on two media (SPA, MYM) revealed that the stationary phase cell viability rapidly decreased in SPA. Submerged spores showed partial resistance to lysozyme and heat, similar to what has been observed for better-characterized S. venezuelae ATCC10712, a chloramphenicol producer. TEM revealed that the differentiated cells in the submerged culture showed larger cell size, thinner cell wall than the aerial spores. We analyzed transcriptome profiles of cells grown in liquid MYM at various growth phases. During transition and/or stationary phases, many differentiationrelated genes were well expressed as judged by RNA level, except some genes forming hydrophobic coats in aerial mycelium. Since submerged spores showed thin cell wall and partial resistance to stresses, we examined cellular expression of MreB protein, an actin-like protein known to be required for spore wall synthesis in Streptomycetes. In contrast to aerial spores where MreB was localized in septa and spore cell wall, submerged spores showed no detectable signal. Therefore, even though the mreB transcripts are abundant in liquid medium, its protein level and/or its interaction with spore wall synthetic complex appear impaired, causing thinner- walled and less sturdy spores in liquid culture.


Assuntos
Macrolídeos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Parede Celular/fisiologia , Cloranfenicol/biossíntese , Perfilação da Expressão Gênica , Metabolismo Secundário/fisiologia , Streptomyces/citologia , Transcriptoma/genética
15.
Nat Commun ; 8: 15812, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598435

RESUMO

In most bacteria, zinc depletion is sensed by Zur, whereas the surplus is sensed by different regulators to achieve zinc homeostasis. Here we present evidence that zinc-bound Zur not only represses genes for zinc acquisition but also induces the zitB gene encoding a zinc exporter in Streptomyces coelicolor, a model actinobacteria. Zinc-dependent gene regulation by Zur occurs in two phases. At sub-femtomolar zinc concentrations (phase I), dimeric Zur binds to the Zur-box motif immediately upstream of the zitB promoter, resulting in low zitB expression. At the same time, Zur represses genes for zinc uptake. At micromolar zinc concentrations (phase II), oligomeric Zur binding with footprint expansion upward from the Zur box results in high zitB induction. Our findings reveal a mode of zinc-dependent gene activation that uses a single metalloregulator to control genes for both uptake and export over a wide range of zinc concentrations.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Transporte de Íons , Regiões Promotoras Genéticas , Streptomyces coelicolor/genética
16.
Front Microbiol ; 8: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28210250

RESUMO

Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor; SoxR that senses reactive compounds directly through oxidation of its [2Fe-2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor. Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p-Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed that multiple chemical activities of a reactive compound can be conveniently monitored in vivo by examining the temporal response of multiple sensitive regulators in the cell to reveal novel activities of the chemicals.

17.
Biochem Biophys Res Commun ; 478(1): 187-192, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444384

RESUMO

Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1.


Assuntos
Cisteína/química , Fatores de Transcrição GATA/química , Proteínas Ferro-Enxofre/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sítios de Ligação , Sequência Conservada , Ferro , Ligação Proteica
18.
Sci Rep ; 6: 28628, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346454

RESUMO

Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor σ(R) (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of σ(R) called σ(R'). In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiting antibiotics enhanced the synthesis of stable σ(R), eliciting a prolonged response. WblC/WhiB7, a WhiB-like DNA-binding protein, is responsible for inducing sigRp1 transcripts encoding the stable σ(R). The amount of WblC protein and its binding to the sigRp1 promoter in vivo increased upon antibiotic treatment. A similar phenomenon appears to exist in Mycobacterium tuberculosis as well. These findings reveal a novel antibiotic-induced resistance mechanism conserved among actinomycetes, and also give an explicit example of overlap in cellular damage and defense mechanisms between thiol-oxidative and anti- translational stresses.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fator VII/genética , Fator sigma/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Regulon/genética , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Compostos de Sulfidrila/farmacologia
19.
Nat Commun ; 7: 11605, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251447

RESUMO

Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development.


Assuntos
Antibacterianos/biossíntese , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Biossíntese de Proteínas , Streptomyces coelicolor/genética , Transcrição Gênica , Antibacterianos/química , Ontologia Genética , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Estrutura Molecular , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Metabolismo Secundário/genética , Streptomyces coelicolor/metabolismo , Sítio de Iniciação de Transcrição
20.
J Biotechnol ; 219: 57-8, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26718561

RESUMO

Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds.


Assuntos
Genoma Bacteriano , Análise de Sequência de DNA/métodos , Streptomyces/genética , Composição de Bases , Tamanho do Genoma , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...