Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1347422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476944

RESUMO

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

2.
Aging Dis ; 15(1): 226-244, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962464

RESUMO

Diets that restrict caloric or protein intake offer a variety of benefits, including decreasing the incidence of cancer. However, whether such diets pose a substantial therapeutic benefit as auxiliary cancer treatments remains unclear. We determined the effects of severe protein depletion on tumorigenesis in a Drosophila melanogaster intestinal tumor model, using a human RAF gain-of-function allele. Severe and continuous protein restriction significantly reduced tumor growth but resulted in premature death. Therefore, we developed a diet in which short periods of severe protein restriction alternated cyclically with periods of complete feeding. This nutritional regime reduced tumor mass, restored gut functionality, and rescued the lifespan of oncogene-expressing flies to the levels observed in healthy flies on a continuous, fully nutritious diet. Furthermore, this diet reduced the chemotherapy-induced stem cell activity associated with tumor recurrence. Transcriptome analysis revealed long-lasting changes in the expression of key genes involved in multiple major developmental signaling pathways. Overall, the data suggest that recurrent severe protein depletion effectively mimics the health benefits of continuous protein restriction, without undesired nutritional shortcomings. This provides seminal insights into the mechanisms of the memory effect required to maintain the positive effects of protein restriction throughout the phases of a full diet. Finally, the repetitive form of strict protein restriction is an ideal strategy for adjuvant cancer therapy that is useful in many tumor contexts.


Assuntos
Drosophila , Neoplasias Intestinais , Animais , Humanos , Longevidade/genética , Drosophila melanogaster/genética , Restrição Calórica , Recidiva Local de Neoplasia , Neoplasias Intestinais/genética
3.
Biofactors ; 50(2): 326-346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37706424

RESUMO

The trace element lithium exerts a versatile bioactivity in humans, to some extend overlapping with in vivo findings in the model organism Drosophila melanogaster. A potentially essential function of lithium in reproduction has been suggested since the 1980s and multiple studies have since been published postulating a regulatory role of lithium in female gametogenesis. However, the impact of lithium on fruit fly egg production has not been at the center of attention to date. In the present study, we report that dietary lithium (0.1-5.0 mM LiCl) substantially improved life time egg production in D. melanogaster w1118 females, with a maximum increase of plus 45% when supplementing 1.0 mM LiCl. This phenomenon was not observed in the insulin receptor mutant InRE19, indicating a potential involvement of insulin-like signaling in the lithium-mediated fecundity boost. Analysis of the whole-body and ovarian transcriptome revealed that dietary lithium affects the mRNA levels of genes encoding proteins related to processes of follicular maturation. To the best of our knowledge, this is the first report on dietary lithium acting as an in vivo fecundity stimulant in D. melanogaster, further supporting the suggested benefit of the trace element in female reproduction.


Assuntos
Drosophila melanogaster , Oligoelementos , Humanos , Animais , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Lítio/farmacologia , Lítio/metabolismo , Oligoelementos/metabolismo , Reprodução , Fertilidade , Insulina/metabolismo
4.
PLoS Pathog ; 19(12): e1011745, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134215

RESUMO

Recently, two genes involved in amoebic liver abscess formation in a mouse model were identified by their differential expression of non-pathogenic (A1np) and pathogenic (B2p) clones of the Entamoeba histolytica isolate HM:1-IMSS. While overexpression of a gene encoding the metallopeptidase EhMP8-2 reduces the virulence of the pathogenic clone B2p, overexpression of the gene ehi_127670 (ehhp127), encoding a hypothetical protein, increases the virulence of the non-pathogenic clone A1np, while silencing this gene in the pathogenic B2p reduces virulence. To understand the role of both molecules in determining the pathogenicity of E. histolytica, silencing, and overexpression transfectants were characterized in detail. Silencing of ehmp8-2, of the homologous gene ehmp8-1, or both in non-pathogenic A1np trophozoites significantly altered the transcript levels of 347, 216, and 58 genes, respectively. This strong change in the expression profiles caused by the silencing of ehmp8-1 and ehmp8-2 implies that these peptidases regulate the expression of numerous genes. Consequently, numerous phenotypic characteristics, including cytopathic, hemolytic, and cysteine peptidase activity, were altered in response to their silencing. Silencing of ehhp127 in pathogenic B2p trophozoites did not affect the expression of other genes, whereas its overexpression in non-pathogenic A1np trophozoites results in an altered expression of approximately 140 genes. EhHP127 is important for trophozoite motility, as its silencing reduces, while its overexpression enhances movement activity. Interestingly, the specific silencing of ehhp127 also significantly affects cytopathic, cysteine peptidase, and hemolytic activities. All three molecules characterized in this study, namely EhMP8-1, EhMP8-2, and EhHP127, are present in amoeba vesicles. The results show that ehmp8-2 and ehhp127 are not only differentially expressed between pathogenic and non-pathogenic amoebae, but that they also significantly affect amoeba pathogenicity-associated phenotypes by completely different mechanisms. This observation suggests that the regulation of amoeba pathogenicity is achieved by a complex network of molecular mechanisms rather than by single factors.


Assuntos
Entamoeba histolytica , Camundongos , Animais , Entamoeba histolytica/metabolismo , Virulência/genética , Cisteína/metabolismo , Peptídeo Hidrolases/metabolismo , Células Clonais , Fenótipo
5.
Environ Microbiome ; 18(1): 55, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370177

RESUMO

BACKGROUND: The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS: The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS: Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.

6.
Insect Biochem Mol Biol ; 157: 103960, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235953

RESUMO

The unique design of respiratory organs in multicellular organisms makes them prone to infection by pathogens. To cope with this vulnerability, highly effective local immune systems evolved that are also operative in the tracheal system of insects. Many pathogens and parasites (including viruses, bacteria, fungi, and metazoan parasites) colonize the trachea or invade the host via this route. Currently, only two modules of the tracheal immune system have been characterized in depth: 1) Immune deficiency pathway-mediated activation of antimicrobial peptide gene expression and 2) local melanization processes that protect the structure from wounding. There is an urgent need to increase our understanding of the architecture of tracheal immune systems, especially regarding those mechanisms that enable the maintenance of immune homeostasis. This need for new studies is particularly exigent for species other than Drosophila.


Assuntos
Proteínas de Drosophila , Traqueia , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Bactérias
7.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982710

RESUMO

Knowing the molecular makeup of an organ system is required for its in-depth understanding. We analyzed the molecular repertoire of the adult tracheal system of the fruit fly Drosophila melanogaster using transcriptome studies to advance our knowledge of the adult insect tracheal system. Comparing this to the larval tracheal system revealed several major differences that likely influence organ function. During the transition from larval to adult tracheal system, a shift in the expression of genes responsible for the formation of cuticular structure occurs. This change in transcript composition manifests in the physical properties of cuticular structures of the adult trachea. Enhanced tonic activation of the immune system is observed in the adult trachea, which encompasses the increased expression of antimicrobial peptides. In addition, modulatory processes are conspicuous, in this case mainly by the increased expression of G protein-coupled receptors in the adult trachea. Finally, all components of a peripheral circadian clock are present in the adult tracheal system, which is not the case in the larval tracheal system. Comparative analysis of driver lines targeting the adult tracheal system revealed that even the canonical tracheal driver line breathless (btl)-Gal4 is not able to target all parts of the adult tracheal system. Here, we have uncovered a specific transcriptome pattern of the adult tracheal system and provide this dataset as a basis for further analyses of the adult insect tracheal system.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Traqueia/metabolismo
8.
Commun Biol ; 6(1): 289, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934156

RESUMO

The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.


Assuntos
Microbiota , Platelmintos , Animais , Platelmintos/fisiologia , Regeneração/fisiologia , Periodicidade
9.
Front Immunol ; 13: 1040510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505446

RESUMO

The fruit fly Drosophila is an excellent model to study the response of different immunocompetent organs during systemic infection. In the present study, we intended to test the hypothesis that the only professional immune organs of the fly, the fat body and hemocytes, show substantial similarities in their responses to systemic infection. However, comprehensive transcriptome analysis of isolated organs revealed highly divergent transcript signatures, with the few commonly regulated genes encoding mainly classical immune effectors from the antimicrobial peptide family. The fat body and the hemocytes each have specific reactions that are not present in the other organ. Fat body-specific responses comprised those enabling an improved peptide synthesis and export. This reaction is accompanied by transcriptomic shifts enabling the use of the energy resources of the fat body more efficiently. Hemocytes, on the other hand, showed enhanced signatures related to phagocytosis. Comparing immune-induced signatures of both cell types with those of whole-body responses showed only a minimal correspondence, mostly restricted again to antimicrobial peptide genes. In summary, the two major immunocompetent cell types of Drosophila show highly specific responses to infection, which are closely linked to the primary function of the respective organ in the landscape of the systemic immune response.


Assuntos
Drosophila , Sepse , Animais , Humanos , Corpo Adiposo , Adipócitos , Tecido Adiposo , Peptídeos Antimicrobianos
10.
Front Allergy ; 3: 876673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187164

RESUMO

Airway remodeling is an umbrella term for structural changes in the conducting airways that occur in chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). The pathobiology of remodeling involves multiple mesenchymal and lymphoid cell types and finally leads to a variety of hardly reversible changes such as hyperplasia of goblet cells, thickening of the reticular basement membrane, deposition of collagen, peribronchial fibrosis, angiogenesis and hyperplasia of bronchial smooth muscle cells. In order to develop solutions for prevention or innovative therapies, these complex processes must be understood in detail which requires their deconstruction into individual building blocks. In the present manuscript we therefore focus on the role of the airway epithelium and introduce Drosophila melanogaster as a model. The simple architecture of the flies' airways as well as the lack of adaptive immunity allows to focus exclusively on the importance of the epithelium for the remodeling processes. We will review and discuss genetic and environmentally induced changes in epithelial structures and molecular responses and propose an integrated framework of research for the future.

11.
Aging (Albany NY) ; 14(16): 6427-6448, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35980274

RESUMO

Food has a decisive influence on our health, to the extent where even lifespan can be directly affected by it. In the present work, we have examined the effects of an aqueous extract of the marine brown alga Eisenia bicyclis in terms of its potential to extend lifespan. For this purpose, we used the fruit fly Drosophila melanogaster as a model. The experiments showed that small amounts of Eisenia extract can extend lifespan by up to 40%. This effect is not only related to the median but also to the maximum lifespan. Interestingly, this life-extending effect is sex-specific, i.e. it occurs exclusively in females. Even under stressful nutritional conditions such as a high sugar diet, this effect is detectable. Mechanistic studies showed that this life-prolonging effect depends on a functional Tor and a functional FoxO signaling pathway. It can be concluded that components of the Eisenia extract prolong lifespan by interacting with the Tor-FoxO axis. This study may serve to stimulate further investigations, which on the one hand show such a life-prolonging effect also in other organisms and on the other hand identify the substances responsible for this effect. Finally, it may also encourage the increased use of arame as a health-promoting food supplement.


Assuntos
Proteínas de Drosophila , Phaeophyceae , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Fatores de Transcrição Forkhead , Longevidade , Masculino , Phaeophyceae/metabolismo , Proteínas
12.
Environ Pollut ; 309: 119696, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780997

RESUMO

Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Animais , Células Cultivadas , Drosophila melanogaster , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Mamíferos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais , Nicotiana
13.
Microorganisms ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744701

RESUMO

Plasmodium falciparum-infected erythrocytes (PfIEs) adhere to endothelial cell receptors (ECRs) of blood vessels mainly via PfEMP1 proteins to escape elimination via the spleen. Evidence suggests that P. vivax-infected reticulocytes (PvIRs) also bind to ECRs, presumably enabled by VIR proteins, as shown by inhibition experiments and studies with transgenic P. falciparum expressing vir genes. To test this hypothesis, our study investigated the involvement of VIR proteins in cytoadhesion using vir gene-expressing P. falciparum transfectants. Those VIR proteins with a putative transmembrane domain were present in Maurer's clefts, and some were also present in the erythrocyte membrane. The VIR protein without a transmembrane domain (PVX_050690) was not exported. Five of the transgenic P. falciparum cell lines, including the one expressing PVX_050690, showed binding to CD36. We observed highly increased expression of specific var genes encoding PfEMP1s in all CD36-binding transfectants. These results suggest that ectopic vir expression regulates var expression through a yet unknown mechanism. In conclusion, the observed cytoadhesion of P. falciparum expressing vir genes depended on PfEMP1s, making this experimental unsuitable for characterizing VIR proteins.

14.
Ecol Evol ; 12(5): e8960, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646322

RESUMO

To respond to changing environmental conditions, a population may either shift toward better-adapted genotypes or adapt on an individual level. The present work aimed to quantify the relevance of these two processes by comparing the responses of defined Drosophila melanogaster populations to different stressors. To do this, we infected two homogeneous populations (isofemale lines), which differ significantly in fitness, and a synthetic heterogeneous population with a specific pathogen and/or exposed them to food restriction. Pectobacterium carotovorum was used to infect Drosophila larvae either fed standard or protein-restricted diet. In particular, the two homogeneous groups, which diverged in their fitness, showed considerable differences in all parameters assessed (survivorship, protein and lipid contents, phenol-oxidase (PO) activity, and antibacterial rate). Under fully nutritious conditions, larvae of the homogeneous population with low fitness exhibited lower survivorship and protein levels, as well as higher PO activity and antibacterial rate compared with the fitter population. A protein-restricted diet and bacterial infection provoked a decrease in survivorship, and antibacterial rate in most populations. Bacterial infection elicited an opposite response in protein and lipid content in both isofemale lines tested. Interestingly, the heterogeneous population showed a complex response pattern. The response of the heterogeneous population followed the fit genotype in terms of survival and antibacterial activity but followed the unfit genotype in terms of PO activity. In conclusion, our results show that defined genotypes exhibit highly divergent responses to varying stressors that are difficult to predict. Furthermore, the responses of heterogeneous populations do not follow a fixed pattern showing a very high degree of plasticity and differences between different genotypes.

15.
Aging (Albany NY) ; 13(21): 24017-24036, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766923

RESUMO

Tumors of the intestinal tract are among the most common tumor diseases in humans, but, like many other tumor entities, show an unsatisfactory prognosis with a need for effective therapies. To test whether nutritional interventions and a combination with a targeted therapy can effectively cure these cancers, we used the fruit fly Drosophila as a model. In this system, we induced tumors by EGFR overexpression in intestinal stem cells. Limiting the amount of protein in the diet restored life span to that of control animals. In combination with a specific EGFR inhibitor, all major tumor-associated phenotypes could be rescued. This form of treatment was also successful in a real treatment scenario, which means when they started after the full tumor phenotype was expressed. In conclusion, reduced protein administration can be a very promising form of adjuvant cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Dieta com Restrição de Proteínas , Neoplasias Intestinais , Longevidade/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Restrição Calórica , Proliferação de Células/efeitos dos fármacos , Drosophila melanogaster , Feminino , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/fisiopatologia
16.
Cells ; 10(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34359826

RESUMO

Infections with the deadliest malaria parasite, Plasmodium falciparum, are accompanied by a strong immunological response of the human host. To date, more than 30 cytokines have been detected in elevated levels in plasma of malaria patients compared to healthy controls. Endothelial cells (ECs) are a potential source of these cytokines, but so far it is not known if their cytokine secretion depends on the direct contact of the P. falciparum-infected erythrocytes (IEs) with ECs in terms of cytoadhesion. Culturing ECs with plasma from malaria patients (27 returning travellers) resulted in significantly increased secretion of IL-11, CXCL5, CXCL8, CXCL10, vascular endothelial growth factor (VEGF) and angiopoietin-like protein 4 (ANGPTL4) if compared to matching controls (22 healthy individuals). The accompanying transcriptome study of the ECs identified 43 genes that were significantly increased in expression (≥1.7 fold) after co-incubation with malaria patient plasma, including cxcl5 and angptl4. Further bioinformatic analyses revealed that biological processes such as cell migration, cell proliferation and tube development were particularly affected in these ECs. It can thus be postulated that not only the cytoadhesion of IEs, but also molecules in the plasma of malaria patients exerts an influence on ECs, and that not only the immunological response but also other processes, such as angiogenesis, are altered.


Assuntos
Encéfalo/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Malária/sangue , Proteína 4 Semelhante a Angiopoietina/sangue , Estudos de Casos e Controles , Linhagem Celular , Citocinas/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Cadeias de Markov , Mapas de Interação de Proteínas
17.
Curr Microbiol ; 78(7): 2708-2719, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34023916

RESUMO

The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1- and agp2- knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.


Assuntos
Fitocromo , Agrobacterium/genética , Proteínas de Bactérias/genética , Luz , Fitocromo/genética , Proteômica
18.
Front Cell Infect Microbiol ; 11: 641472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816346

RESUMO

The human protozoan parasite Entamoeba histolytica can live in the human intestine for months or years without generating any symptoms in the host. For unknown reasons, amoebae can suddenly destroy the intestinal mucosa and become invasive. This can lead to amoebic colitis or extraintestinal amoebiasis whereby the amoebae spread to other organs via the blood vessels, most commonly the liver where abscesses develop. Entamoeba nuttalli is the closest genetic relative of E. histolytica and is found in wild macaques. Another close relative is E. dispar, which asyptomatically infects the human intestine. Although all three species are closely related, only E. histolytica and E. nuttalli are able to penetrate their host's intestinal epithelium. Lineage-specific genes and gene families may hold the key to understanding differences in virulence among species. Here we discuss those genes found in E. histolytica that have relatives in only one or neither of its sister species, with particular focus on the peptidase, AIG, Ariel, and BspA families.


Assuntos
Amebíase , Disenteria Amebiana , Entamoeba histolytica , Entamoeba , Entamebíase , Humanos
19.
Insects ; 12(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915977

RESUMO

Tyramine is a neuroactive compound that acts as neurotransmitter, neuromodulator, and neurohormone in insects. Three G protein-coupled receptors, TAR1-3, are responsible for mediating the intracellular pathway in the complex tyraminergic network. TAR1, the prominent player in this system, was initially classified as an octopamine receptor which can also be activated by tyramine, while it later appeared to be a true tyramine receptor. Even though TAR1 is currently considered as a well-defined tyramine receptor and several insect TAR1s have been characterized, a defined nomenclature is still inconsistent. In the last years, our knowledge on the structural, biochemical, and functional properties of TAR1 has substantially increased. This review summarizes the available information on TAR1 from different insect species in terms of basic structure, its regulation and signal transduction mechanisms, and its distribution and functions in the brain and the periphery. A special focus is given to the TAR1-mediated intracellular signaling pathways as well as to their physiological role in regulating behavioral traits. Therefore, this work aims to correlate, for the first time, the physiological relevance of TAR1 functions with the tyraminergic system in insects. In addition, pharmacological studies have shed light on compounds with insecticidal properties having TAR1 as a target and on the emerging trend in the development of novel strategies for pest control.

20.
Cell Rep ; 35(1): 108956, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826881

RESUMO

Extensive remodeling of the airways is a major characteristic of chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). To elucidate the importance of a deregulated immune response in the airways for remodeling processes, we established a matching Drosophila model. Here, triggering the Imd (immune deficiency) pathway in tracheal cells induced organ-wide remodeling. This structural remodeling comprises disorganization of epithelial structures and comprehensive epithelial thickening. We show that these structural changes do not depend on the Imd pathway's canonical branch terminating on nuclear factor κB (NF-κB) activation. Instead, activation of a different segment of the Imd pathway that branches off downstream of Tak1 and comprises activation of c-Jun N-terminal kinase (JNK) and forkhead transcription factor of the O subgroup (FoxO) signaling is necessary and sufficient to mediate the observed structural changes of the airways. Our findings imply that targeting JNK and FoxO signaling in the airways could be a promising strategy to interfere with disease-associated airway remodeling processes.


Assuntos
Remodelação das Vias Aéreas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Fatores de Transcrição Forkhead/metabolismo , Imunidade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Epitélio/metabolismo , Epitélio/microbiologia , Hiperplasia , Estágios do Ciclo de Vida , MAP Quinase Quinase Quinases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...