Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1848, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29184052

RESUMO

Differentiation abnormalities are a hallmark of tuberous sclerosis complex (TSC) manifestations; however, the genesis of these abnormalities remains unclear. Here we report on mechanisms controlling the multi-lineage, early neuronal progenitor and neural stem-like cell characteristics of lymphangioleiomyomatosis (LAM) and angiomyolipoma cells. These mechanisms include the activation of a previously unreported Rheb-Notch-Rheb regulatory loop, in which the cyclic binding of Notch1 to the Notch-responsive elements (NREs) on the Rheb promoter is a key event. This binding induces the transactivation of Rheb. The identified NRE2 and NRE3 on the Rheb promoter are important to Notch-dependent promoter activity. Notch cooperates with Rheb to block cell differentiation via similar mechanisms in mouse models of TSC. Cell-specific loss of Tsc1 within nestin-expressing cells in adult mice leads to the formation of kidney cysts, renal intraepithelial neoplasia, and invasive papillary renal carcinoma.


Assuntos
Angiomiolipoma/patologia , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/patologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Receptor Notch1/metabolismo , Angiomiolipoma/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatose/metabolismo , Masculino , Camundongos SCID , Camundongos Transgênicos , Crista Neural/metabolismo , Crista Neural/patologia , Regiões Promotoras Genéticas , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Receptor Notch1/genética , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Esclerose Tuberosa/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Biol Cell ; 27(18): 2857-66, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466320

RESUMO

The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.


Assuntos
Proteínas de Drosophila/metabolismo , Hormônios Juvenis/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Animais , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Endossomos/fisiologia , Transporte Proteico , Receptores Notch/fisiologia , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
J Cell Biol ; 201(3): 439-48, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23609534

RESUMO

In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is present in both pIIa and pIIb cells, a second role for Sanpodo in regulating Notch signaling in the low-Notch pIIb cell has been proposed. Here we demonstrate that Sanpodo regulates Notch signaling levels in both pIIa and pIIb cells via distinct mechanisms. The interaction of Sanpodo with Presenilin, a component of the γ-secretase complex, was required for Notch activation and pIIa cell fate. In contrast, Sanpodo suppresses Notch signaling in the pIIb cell by driving Notch receptor internalization. Together, these results demonstrate that a single protein can regulate Notch signaling through distinct mechanisms to either promote or suppress signaling depending on the local cellular context.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Receptores Notch/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Endocitose , Mecanorreceptores/fisiologia , Proteínas dos Microfilamentos/fisiologia , Presenilinas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/metabolismo , Transporte Proteico , Células-Tronco/fisiologia
4.
PLoS One ; 7(11): e48720, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144943

RESUMO

In Drosophila, the pattern of adult pigmentation is initiated during late pupal stages by the production of catecholamines DOPA and dopamine, which are converted to melanin. The pattern and degree of melanin deposition is controlled by the expression of genes such as ebony and yellow as well as by the enzymes involved in catecholamine biosynthesis. In this study, we show that the conserved TSC/TORC1 cell growth pathway controls catecholamine biosynthesis in Drosophila during pigmentation. We find that high levels of Rheb, an activator of the TORC1 complex, promote premature pigmentation in the mechanosensory bristles during pupal stages, and alter pigmentation in the cuticle of the adult fly. Disrupting either melanin synthesis by RNAi knockdown of melanogenic enzymes such as tyrosine hydroxylase (TH), or downregulating TORC1 activity by Raptor knockdown, suppresses the Rheb-dependent pigmentation phenotype in vivo. Increased Rheb activity drives pigmentation by increasing levels of TH in epidermal cells. Our findings indicate that control of pigmentation is linked to the cellular nutrient-sensing pathway by regulating levels of a critical enzyme in melanogenesis, providing further evidence that inappropriate activation of TORC1, a hallmark of the human tuberous sclerosis complex tumor syndrome disorder, can alter metabolic and differentiation pathways in unexpected ways.


Assuntos
Catecolaminas/biossíntese , Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Pigmentação/genética , Fatores de Transcrição/fisiologia , Animais , Catecolaminas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epiderme/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Melaninas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Pupa/metabolismo , Interferência de RNA , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo
5.
Curr Opin Cell Biol ; 24(4): 534-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22818956

RESUMO

The Notch signaling pathway controls patterning and cell fate decisions during development in metazoans, and is associated with human diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers. Studies over the last several years have revealed sophisticated regulation of both the membrane-bound Notch receptor and its ligands by vesicle trafficking. This is perhaps most evident in neural progenitor cells in Drosophila, which divide asymmetrically to segregate Numb, an endocytic adaptor protein that acts as a Notch pathway inhibitor, to one daughter cell. Here, we discuss recent findings addressing how receptor and ligand trafficking to specific membrane compartments control activation of the Notch pathway in asymmetrically dividing cells and other tissues.


Assuntos
Endocitose , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Divisão Celular Assimétrica , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Humanos , Hormônios Juvenis/metabolismo , Ligantes , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transporte Proteico
6.
J Cell Biol ; 196(1): 65-83, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22213802

RESUMO

Notch signaling governs binary cell fate determination in asymmetrically dividing cells. Through a forward genetic screen we identified the fly homologue of Eps15 homology domain containing protein-binding protein 1 (dEHBP1) as a novel regulator of Notch signaling in asymmetrically dividing cells. dEHBP1 is enriched basally and at the actin-rich interface of pII cells of the external mechanosensory organs, where Notch signaling occurs. Loss of function of dEHBP1 leads to up-regulation of Sanpodo, a regulator of Notch signaling, and aberrant trafficking of the Notch ligand, Delta. Furthermore, Sec15 and Rab11, which have been previously shown to regulate the localization of Delta, physically interact with dEHBP1. We propose that dEHBP1 functions as an adaptor molecule for the exocytosis and recycling of Delta, thereby affecting cell fate decisions in asymmetrically dividing cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Divisão Celular Assimétrica/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/citologia , Exocitose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
7.
J Cell Sci ; 124(Pt 23): 4001-13, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159415

RESUMO

Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and ß-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.


Assuntos
Junções Aderentes/fisiologia , Proteínas do Domínio Armadillo/química , Caderinas/química , Polaridade Celular , Proteínas de Drosophila/química , Células Epiteliais/fisiologia , Fatores de Transcrição/química , Junções Aderentes/química , Animais , Drosophila/química , Drosophila/genética , Embrião não Mamífero/química , Embrião não Mamífero/fisiologia , Células Epiteliais/química , Células Epiteliais/citologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Imunoprecipitação , Membranas/química , Membranas/fisiologia , Complexos Multiproteicos/química , Ligação Proteica , Estabilidade Proteica , Transporte Proteico
8.
J Vis Exp ; (51)2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21654627

RESUMO

Since the discovery of Green Fluorescent Protein (GFP), there has been a revolutionary change in the use of live-cell imaging as a tool for understanding fundamental biological mechanisms. Striking progress has been particularly evident in Drosophila, whose extensive toolkit of mutants and transgenic lines provides a convenient model to study evolutionarily-conserved developmental and cell biological mechanisms. We are interested in understanding the mechanisms that control cell fate specification in the adult peripheral nervous system (PNS) in Drosophila. Bristles that cover the head, thorax, abdomen, legs and wings of the adult fly are individual mechanosensory organs, and have been studied as a model system for understanding mechanisms of Notch-dependent cell fate decisions. Sensory organ precursor (SOP) cells of the microchaetes (or small bristles), are distributed throughout the epithelium of the pupal thorax, and are specified during the first 12 hours after the onset of pupariation. After specification, the SOP cells begin to divide, segregating the cell fate determinant Numb to one daughter cell during mitosis. Numb functions as a cell-autonomous inhibitor of the Notch signaling pathway. Here, we show a method to follow protein dynamics in SOP cell and its progeny within the intact pupal thorax using a combination of tissue-specific Gal4 drivers and GFP-tagged fusion proteins. This technique has the advantage over fixed tissue or cultured explants because it allows us to follow the entire development of an organ from specification of the neural precursor to growth and terminal differentiation of the organ. We can therefore directly correlate changes in cell behavior to changes in terminal differentiation. Moreover, we can combine the live imaging technique with mosaic analysis with a repressible cell marker (MARCM) system to assess the dynamics of tagged proteins in mitotic SOPs under mutant or wildtype conditions. Using this technique, we and others have revealed novel insights into regulation of asymmetric cell division and the control of Notch signaling activation in SOP cells (examples include references 1-6, 7, 8).


Assuntos
Técnicas Citológicas/métodos , Drosophila/citologia , Sistema Nervoso Periférico/citologia , Órgãos dos Sentidos/citologia , Animais , Drosophila/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Sistema Nervoso Periférico/crescimento & desenvolvimento , Pupa , Órgãos dos Sentidos/crescimento & desenvolvimento
9.
PLoS One ; 5(8): e12369, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20808771

RESUMO

Mammalian Cas proteins regulate cell migration, division and survival, and are often deregulated in cancer. However, the presence of four paralogous Cas family members in mammals (BCAR1/p130Cas, EFS/Sin1, NEDD9/HEF1/Cas-L, and CASS4/HEPL) has limited their analysis in development. We deleted the single Drosophila Cas gene, Dcas, to probe the developmental function of Dcas. Loss of Dcas had limited effect on embryonal development. However, we found that Dcas is an important modulator of the severity of the developmental phenotypes of mutations affecting integrins (If and mew) and their downstream effectors Fak56D or Src42A. Strikingly, embryonic lethal Fak56D-Dcas double mutant embryos had extensive cell polarity defects, including mislocalization and reduced expression of E-cadherin. Further genetic analysis established that loss of Dcas modified the embryonal lethal phenotypes of embryos with mutations in E-cadherin (Shg) or its signaling partners p120- and beta-catenin (Arm). These results support an important role for Cas proteins in cell-cell adhesion signaling in development.


Assuntos
Polaridade Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Alelos , Animais , Caderinas/metabolismo , Adesão Celular , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Epiteliais/citologia , Feminino , Deleção de Genes , Integrinas/metabolismo , Junções Intercelulares/metabolismo , Masculino , Mesoderma/citologia , Mutação , Fenótipo , Transporte Proteico , Especificidade por Substrato
10.
Mol Biol Cell ; 21(5): 802-10, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053677

RESUMO

In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. However, the significance of Numb-dependent Sanpodo regulation is unclear. In this study, we conducted a structure-function analysis to identify the determinants of Sanpodo targeting in vivo. We identified an NPAF motif in the amino-terminal cytoplasmic tail of Sanpodo, which is conserved among insect Sanpodo homologues. The Sanpodo NPAF motif is predicted to bind directly to the Numb phosphotyrosine-binding domain and is critical for Numb binding in vitro. Deletion or mutation of the NPAF motif results in accumulation of Sanpodo at the plasma membrane in Numb-positive cells in vivo. Genetic analysis of Sanpodo NPAF mutants shows that Numb-dependent Sanpodo endocytic targeting can be uncoupled from Notch signaling regulation. Our findings demonstrate that Sanpodo contains an evolutionarily conserved motif that has been linked to Numb-dependent regulation in vertebrates and further support the model that Numb regulates Notch signaling independently of Sanpodo membrane trafficking in neural progenitor cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/metabolismo , Neurônios/fisiologia , Receptores Notch/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mitose , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
11.
J Clin Invest ; 120(1): 93-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20038815

RESUMO

Mutations in either of the genes encoding the tuberous sclerosis complex (TSC), TSC1 and TSC2, result in a multisystem tumor disorder characterized by lesions with unusual lineage expression patterns. How these unusual cell-fate determination patterns are generated is unclear. We therefore investigated the role of the TSC in the Drosophila external sensory organ (ESO), a classic model of asymmetric cell division. In normal development, the sensory organ precursor cell divides asymmetrically through differential regulation of Notch signaling to produce a pIIa and a pIIb cell. We report here that inactivation of Tsc1 and overexpression of the Ras homolog Rheb each resulted in duplication of the bristle and socket cells, progeny of the pIIa cell, and loss of the neuronal cell, a product of pIIb cell division. Live imaging of ESO development revealed this cell-fate switch occurred at the pIIa-pIIb 2-cell stage. In human angiomyolipomas, benign renal neoplasms often found in tuberous sclerosis patients, we found evidence of Notch receptor cleavage and Notch target gene activation. Further, an angiomyolipoma-derived cell line carrying biallelic TSC2 mutations exhibited TSC2- and Rheb-dependent Notch activation. Finally, inhibition of Notch signaling using a gamma-secretase inhibitor suppressed proliferation of Tsc2-null rat cells in a xenograft model. Together, these data indicate that the TSC and Rheb regulate Notch-dependent cell-fate decision in Drosophila and Notch activity in mammalian cells and that Notch dysregulation may underlie some of the distinctive clinical and pathologic features of TSC.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Receptores Notch/fisiologia , Órgãos dos Sentidos/embriologia , Transdução de Sinais/fisiologia , Angiomiolipoma/metabolismo , Animais , Evolução Biológica , Drosophila , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Rim/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos SCID , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Esclerose Tuberosa/etiologia
12.
Genetics ; 182(1): 407-10, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19279324

RESUMO

Forty years ago, a high frequency of lethal giant larvae (lgl) alleles in wild populations of Drosophila melanogaster was reported. This locus has been intensively studied for its roles in epithelial polarity, asymmetric neural divisions, and restriction of tissue proliferation. Here, we identify a high frequency of lgl alleles in the Bloomington second chromosome deficiency kit and the University of California at Los Angeles Bruinfly FRT40A-lethal P collection. These unrecognized aberrations confound the use of these workhorse collections for phenotypic screening or genetic mapping. In addition, we determined that independent alleles of insensitive, reported to affect asymmetric cell divisions during sensory organ development, carry lgl deletions that are responsible for the observed phenotypes. Taken together, these results encourage the routine testing of second chromosome stocks for second-site alleles of lgl.


Assuntos
Alelos , Aberrações Cromossômicas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes Letais/genética , Proteínas Supressoras de Tumor/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento
13.
Mol Biol Cell ; 19(10): 4122-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667536

RESUMO

In vertebrate neurons, axons have a uniform arrangement of microtubules with plus ends distal to the cell body (plus-end-out), and dendrites have equal numbers of plus- and minus-end-out microtubules. To determine whether microtubule orientation is a conserved feature of axons and dendrites, we analyzed microtubule orientation in invertebrate neurons. Using microtubule plus end dynamics, we mapped microtubule orientation in Drosophila sensory neurons, interneurons, and motor neurons. As expected, all axonal microtubules have plus-end-out orientation. However, in proximal dendrites of all classes of neuron, approximately 90% of dendritic microtubules were oriented with minus ends distal to the cell body. This result suggests that minus-end-out, rather than mixed orientation, microtubules are the signature of the dendritic microtubule cytoskeleton. Surprisingly, our map of microtubule orientation predicts that there are no tracks for direct cargo transport between the cell body and dendrites in unipolar neurons. We confirm this prediction, and validate the completeness of our map, by imaging endosome movements in motor neurons. As predicted by our map, endosomes travel smoothly between the cell body and axon, but they cannot move directly between the cell body and dendrites.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Citoesqueleto/metabolismo , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Transgenes , Proteína Vermelha Fluorescente
14.
Curr Opin Cell Biol ; 18(5): 507-15, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16919436

RESUMO

Adult metazoans represent the culmination of an intricate developmental process involving the temporally and spatially orchestrated division, migration, differentiation, attachment, polarization and death of individual cells. An elaborate infrastructure connecting the cell cycle and cell attachment machinery is essential for such exquisite integration of developmental processes. Integrin-, cadherin-, Merlin- and planar cell polarity (PCP)-dependent signaling cascades quantitatively and qualitatively program cell division during development. Proteins in this signaling infrastructure may represent an important source of cancer vulnerability in metazoans, as their dysfunction can pleiotropically promote the oncogenic process.


Assuntos
Adesão Celular/fisiologia , Ciclo Celular/fisiologia , Animais , Caderinas/metabolismo , Integrinas/metabolismo , Neurofibromina 2/metabolismo , Transdução de Sinais/fisiologia
15.
J Cell Sci ; 118(Pt 11): 2393-404, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15923652

RESUMO

The mature ascidian oocyte is a large cell containing cytoplasmic and cortical domains polarized along a primary animal-vegetal (a-v) axis. The oocyte cortex is characterized by a gradient distribution of a submembrane monolayer of cortical rough endoplasmic reticulum (cER) and associated maternal postplasmic/PEM mRNAs (cER-mRNA domain). Between fertilization and first cleavage, this cER-mRNA domain is first concentrated vegetally and then relocated towards the posterior pole via microfilament-driven cortical contractions and spermaster-microtubule-driven translocations. The cER-mRNA domain further concentrates in a macroscopic cortical structure called the centrosome attracting body (CAB), which mediates a series of asymmetric divisions starting at the eight-cell stage. This results in the segregation of determinant mRNAs and their products in posterior cells of the embryo precursors of the muscle and germ line. Using two species of ascidians (Ciona intestinalis and Phallusia mammillata), we have pursued and amplified the work initiated in Halocynthia roretzi. We have analysed the cortical reorganizations in whole cells and in cortical fragments isolated from oocytes and from synchronously developing zygotes and embryos. After fertilization, we observe that a cortical patch rich in microfilaments encircles the cER-mRNA domain, concentrated into a cortical cap at the vegetal/contraction pole (indicating the future dorsal pole). Isolated cortices also retain microtubule asters rich in cER (indicating the future posterior pole). Before mitosis, parts of the cER-mRNA domain are detected, together with short microtubules, in isolated posterior (but not anterior) cortices. At the eight-cell stage, the posteriorly located cER-mRNA domain undergoes a cell-cycle-dependant compaction into the CAB. The CAB with embedded centrosomal microtubules can be isolated with cortical fragments from eight-cell-stage embryos. These and previous observations indicate that cytoskeleton-driven repositioning and compaction of a polarized cortical domain made of rough ER is a conserved mechanism used for polarization and segregation of cortical maternal mRNAs in embryos of evolutionarily distant species of ascidians.


Assuntos
Blastômeros/metabolismo , Oócitos/metabolismo , RNA Mensageiro Estocado/metabolismo , Urocordados/embriologia , Zigoto/metabolismo , Animais , Evolução Biológica , Blastômeros/citologia , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Feminino , Oócitos/citologia , Zigoto/citologia
16.
Mol Biol Cell ; 16(8): 3480-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15901829

RESUMO

In Drosophila, asymmetric division occurs during proliferation of neural precursors of the central and peripheral nervous system (PNS), where a membrane-associated protein, Numb, is asymmetrically localized during cell division and is segregated to one of the two daughter cells (the pIIb cell) after mitosis. numb has been shown genetically to function as an antagonist of Notch signaling and also as a negative regulator of the membrane localization of Sanpodo, a four-pass transmembrane protein required for Notch signaling during asymmetric cell division in the CNS. Previously, we identified lethal giant larvae (lgl) as a gene required for numb-mediated inhibition of Notch in the adult PNS. In this study we show that Sanpodo is expressed in asymmetrically dividing precursor cells of the PNS and that Sanpodo internalization in the pIIb cell is dependent cytoskeletally associated Lgl. Lgl specifically regulates internalization of Sanpodo, likely through endocytosis, but is not required for the endocytosis Delta, which is a required step in the Notch-mediated cell fate decision during asymmetric cell division. Conversely, the E3 ubiquitin ligase neuralized is required for both Delta endocytosis and the internalization of Sanpodo. This study identifies a hitherto unreported role for Lgl as a regulator of Sanpodo during asymmetric cell division in the adult PNS.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Divisão Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteínas dos Microfilamentos/metabolismo , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Receptores Notch/metabolismo , Proteínas Supressoras de Tumor/genética
17.
Development ; 132(10): 2319-32, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15829515

RESUMO

The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote Delta endocytosis and signaling activity. Although orthologs of both Neuralized and Mind bomb are found in most metazoan organisms, their relative contributions to Notch signaling in any single organism have not yet been assessed. We show here that a Drosophila ortholog of Mind bomb (D-mib) is a positive component of Notch signaling that is required for multiple Neuralized-independent, Notch-dependent developmental processes. Furthermore, we show that D-mib associates physically and functionally with both Serrate and Delta. We find that D-mib uses its ubiquitin ligase activity to promote DSL ligand activity, an activity that is correlated with its ability to induce the endocytosis and degradation of both Delta and Serrate (see also Le Borgne et al., 2005). We further demonstrate that D-mib can functionally replace Neuralized in multiple cell fate decisions that absolutely require endogenous Neuralized, a testament to the highly similar activities of these two unrelated ubiquitin ligases in regulating Notch signaling. We conclude that ubiquitination of Delta and Serrate by Neuralized and D-mib is an obligate feature of DSL ligand activation throughout Drosophila development.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Clonagem Molecular , Cruzamentos Genéticos , Primers do DNA , Proteínas de Drosophila/genética , Imunofluorescência , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Mutação/genética , Receptores Notch , Proteínas Serrate-Jagged , Ubiquitina-Proteína Ligases/genética , Proteínas de Xenopus
18.
Curr Opin Cell Biol ; 16(2): 195-205, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15196564

RESUMO

Asymmetric cell division is a conserved mechanism for partitioning information during mitosis. Over the past several years, significant progress has been made in our understanding of how cells establish polarity during asymmetric cell division and how determinants, in the form of localized proteins and mRNAs, are segregated. In particular, genetic studies in Drosophila and Caenorhabditis elegans have linked cell polarity, G protein signaling and regulation of the cytoskeleton to coordination of mitotic spindle orientation and localization of determinants. Also, several new studies have furthered our understanding of how asymmetrically localized cell fate determinants, such as the Numb, a negative regulator Notch signaling, functions in biasing cell fates in the developing nervous system in Drosophila. In vertebrates, analysis of dividing neural progenitor cells by in vivo imaging has raised questions about the role of asymmetric cell divisions during neurogenesis.


Assuntos
Polaridade Celular/genética , Citoesqueleto/metabolismo , Transdução de Sinais/genética , Fuso Acromático/metabolismo , Animais , Divisão Celular/fisiologia , Citoesqueleto/genética , Proteínas de Drosophila , Humanos , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Animais , Receptores Notch , Fuso Acromático/genética
19.
Genes Dev ; 18(6): 623-8, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15075290

RESUMO

The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.


Assuntos
Diferenciação Celular/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX2 , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/metabolismo
20.
Curr Biol ; 13(9): 778-83, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12725738

RESUMO

The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cell fate. Sensory organ precursors (SOPs) also segregate Numb asymmetrically at cell division. Numb functions to inhibit Notch signaling and to specify the fates of progenies of the SOP that constitute the cellular components of the adult sensory organ. We report here that, in contrast to the embryonic neuroblast, lgl is not required for asymmetric localization of Numb in the dividing SOP. Nevertheless, mosaic analysis reveals that lgl is required for cell fate specification within the SOP lineage; SOPs lacking Lgl fail to specify internal neurons and glia. Epistasis studies suggest that Lgl acts to inhibit Notch signaling by functioning downstream or in parallel with Numb. These findings uncover a previously unknown function of Lgl in the inhibition of Notch and reveal different modes of action by which Lgl can influence cell fate in the neuroblast and SOP lineages.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Inativação Gênica/fisiologia , Hormônios Juvenis/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Polaridade Celular/genética , Polaridade Celular/fisiologia , Drosophila/citologia , Células Epiteliais/fisiologia , Imuno-Histoquímica , Larva/fisiologia , Proteínas de Membrana/genética , Receptores Notch , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...