Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(2): 18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874191

RESUMO

A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.

3.
Nature ; 576(7786): 223-227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802005

RESUMO

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

4.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287631

RESUMO

Saturn has a sufficiently strong dipole magnetic field to trap high-energy charged particles and form radiation belts, which have been observed outside its rings. Whether stable radiation belts exist near the planet and inward of the rings was previously unknown. The Cassini spacecraft's Magnetosphere Imaging Instrument obtained measurements of a radiation belt that lies just above Saturn's dense atmosphere and is decoupled from the rest of the magnetosphere by the planet's A- to C-rings. The belt extends across the D-ring and comprises protons produced through cosmic ray albedo neutron decay and multiple charge-exchange reactions. These protons are lost to atmospheric neutrals and D-ring dust. Strong proton depletions that map onto features on the D-ring indicate a highly structured and diverse dust environment near Saturn.

5.
ACS Nano ; 11(6): 5836-5843, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28599108

RESUMO

Gap plasmonic nanostructures are of great interest due to their ability to concentrate light into small volumes. Theoretical studies, considering quantum mechanical effects, have predicted the optimal spatial gap between adjacent nanoparticles to be in the subnanometer regime in order to achieve the strongest possible field enhancement. Here, we present a technology to fabricate gap plasmonic structures with subnanometer resolution, high reliability, and high throughput using collapsible nanofingers. This approach enables us to systematically investigate the effects of gap size and tunneling barrier height. The experimental results are consistent with previous findings as well as with a straightforward theoretical model that is presented here.

6.
Sci Rep ; 6: 34014, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671620

RESUMO

To what extent deep-time dispersal limitation shapes present-day biodiversity at broad spatial scales remains elusive. Here, we compiled a continental dataset on the distributions of African lizard species in the reptile subfamily Agaminae (a relatively young, Neogene radiation of agamid lizards which ancestors colonized Africa from the Arabian peninsula) and tested to what extent historical colonization and dispersal limitation (i.e. accessibility from areas of geographic origin) can explain present-day species richness relative to current climate, topography, and climate change since the late Miocene (~10 mya), the Pliocene (~3 mya), and the Last Glacial Maximum (LGM, 0.021 mya). Spatial and non-spatial multi-predictor regression models revealed that time-limited dispersal via arid corridors is a key predictor to explain macro-scale patterns of species richness. In addition, current precipitation seasonality, current temperature of the warmest month, paleo-temperature changes since the LGM and late Miocene, and topographic relief emerged as important drivers. These results suggest that deep-time dispersal constraints - in addition to climate and mountain building - strongly shape current species richness of Africa's arid-adapted taxa. Such historical dispersal limitation might indicate that natural movement rates of species are too slow to respond to rates of ongoing and projected future climate and land use change.

7.
Pest Manag Sci ; 71(2): 180-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24899114

RESUMO

BACKGROUND: Frequent reports of rock hyrax (Procavia capensis) invasions in residential areas prompted an investigation of this problem in order to identify possible solutions. From these reports, problem areas in South Africa were identified, and sites within the Free State Province were selected for this study. At these sites, rock hyrax populations demonstrate an unusual annual increase. This increase has led to a food and habitat shortage, forcing individuals into residential areas in search of additional refuges and food sources. In order to manage populations, several preventive as well as control methods have been assessed and implemented. Population densities were determined using the Lincoln index and the Robson-Whitlock technique. Wild populations were included in the study for comparison purposes. RESULTS: Additional resources within residential areas have facilitated populations to grow much larger, in some instances exceeding the natural limits (30-40 individuals) by 470%. This influx contributes to human-wildlife conflict. With the use of relocation, populations were reduced within 3 months. DISCUSSION: Preventive methods have shown various levels of success. Specific combinations of these methods have proved to be more effective than others. The strategy of capture and relocation of individuals for rapid reduction in the population has been successful. Preliminary results show that the establishment of relocated populations is not successful owing to high predation rates. The reintroduction of natural predators for rock hyrax population control appears to have positive results, but this will have to be monitored on a regular basis.


Assuntos
Procaviídeos , Controle de Pragas/métodos , Animais , Felidae , Feminino , Cadeia Alimentar , Masculino , África do Sul
8.
Science ; 341(6142): 144-7, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23811223

RESUMO

We report measurements of energetic (>40 kiloelectron volts) charged particles on Voyager 1 from the interface region between the heliosheath, dominated by heated solar plasma, and the local interstellar medium, which is expected to contain cold nonsolar plasma and the galactic magnetic field. Particles of solar origin at Voyager 1, located at 18.5 billion kilometers (123 astronomical units) from the Sun, decreased by a factor of >10(3) on 25 August 2012, while those of galactic origin (cosmic rays) increased by 9.3% at the same time. Intensity changes appeared first for particles moving in the azimuthal direction and were followed by those moving in the radial and antiradial directions with respect to the solar radius vector. This unexpected heliospheric "depletion region" may form part of the interface between solar plasma and the galaxy.

9.
Science ; 326(5955): 971-3, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833914

RESUMO

We report an all-sky image of energetic neutral atoms (ENAs) >6 kilo-electron volts produced by energetic protons occupying the region (heliosheath) between the boundary of the extended solar atmosphere and the local interstellar medium (LISM). The map obtained by the Ion and Neutral Camera (INCA) onboard Cassini reveals a broad belt of energetic protons whose nonthermal pressure is comparable to that of the local interstellar magnetic field. The belt, centered at approximately 260 degrees ecliptic longitude extending from north to south and looping back through approximately 80 degrees, appears to be ordered by the local interstellar magnetic field. The shape revealed by the ENA image does not conform to current models, wherein the heliosphere resembles a cometlike figure aligned in the direction of Sun's travel through the LISM.

10.
Science ; 326(5955): 966-8, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833915

RESUMO

Simulations of energetic neutral atom (ENA) maps predict flux magnitudes that are, in some cases, similar to those observed by the Interstellar Boundary Explorer (IBEX) spacecraft, but they miss the ribbon. Our model of the heliosphere indicates that the local interstellar medium (LISM) magnetic field (B(LISM)) is transverse to the line of sight (LOS) along the ribbon, suggesting that the ribbon may carry its imprint. The force-per-unit area on the heliopause from field line draping and the LISM ram pressure is comparable with the ribbon pressure if the LOS approximately 30 to 60 astronomical units and B(LISM) approximately 2.5 microgauss. Although various models have advantages in accounting for some of the observations, no model can explain all the dominant features, which probably requires a substantial change in our understanding of the processes that shape our heliosphere.

11.
Science ; 326(5955): 964-6, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833918

RESUMO

The Interstellar Boundary Explorer (IBEX) has obtained all-sky images of energetic neutral atoms emitted from the heliosheath, located between the solar wind termination shock and the local interstellar medium (LISM). These flux maps reveal distinct nonthermal (0.2 to 6 kilo-electron volts) heliosheath proton populations with spectral signatures ordered predominantly by ecliptic latitude. The maps show a globally distributed population of termination-shock-heated protons and a superimposed ribbonlike feature that forms a circular arc in the sky centered on ecliptic coordinate (longitude lambda, latitude beta) = (221 degrees, 39 degrees), probably near the direction of the LISM magnetic field. Over the IBEX energy range, the ribbon's nonthermal ion pressure multiplied by its radial thickness is in the range of 70 to 100 picodynes per square centimeter AU (AU, astronomical unit), which is significantly larger than the 30 to 60 picodynes per square centimeter AU of the globally distributed population.

12.
Science ; 326(5955): 959-62, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19833923

RESUMO

The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere.

13.
Nature ; 454(7200): 67-70, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18596801

RESUMO

Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind.

14.
Nature ; 450(7170): 650-3, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046398

RESUMO

Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth's also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.

15.
Science ; 318(5848): 220-2, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932283

RESUMO

When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ.


Assuntos
Júpiter , Elétrons , Meio Ambiente Extraterreno , Íons , Oxigênio , Prótons , Astronave , Enxofre , Temperatura
16.
Science ; 309(5743): 2020-4, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16179469

RESUMO

Voyager 1 (V1) began measuring precursor energetic ions and electrons from the heliospheric termination shock (TS) in July 2002. During the ensuing 2.5 years, average particle intensities rose as V1 penetrated deeper into the energetic particle foreshock of the TS. Throughout 2004, V1 observed even larger, fluctuating intensities of ions from 40 kiloelectron volts (keV) to >/=50 megaelectron volts per nucleon and of electrons from >26 keV to >/=350 keV. On day 350 of 2004 (2004/350), V1 observed an intensity spike of ions and electrons that was followed by a sustained factor of 10 increase at the lowest energies and lesser increases at higher energies, larger than any intensities since V1 was at 15 astronomical units in 1982. The estimated solar wind radial flow speed was positive (outward) at approximately +100 kilometers per second (km s(-1)) from 2004/352 until 2005/018, when the radial flows became predominantly negative (sunward) and fluctuated between approximately -50 and 0 km s(-1) until about 2005/110; they then became more positive, with recent values (2005/179) of approximately +50 km s(-1). The energetic proton spectrum averaged over the postshock period is apparently dominated by strongly heated interstellar pickup ions. We interpret these observations as evidence that V1 was crossed by the TS on 2004/351 (during a tracking gap) at 94.0 astronomical units, evidently as the shock was moving radially inward in response to decreasing solar wind ram pressure, and that V1 has remained in the heliosheath until at least mid-2005.

17.
Science ; 308(5724): 989-92, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15890874

RESUMO

The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.


Assuntos
Saturno , Atmosfera , Meio Ambiente Extraterreno , Íons , Magnetismo , Astronave
18.
Science ; 307(5713): 1270-3, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15731445

RESUMO

The Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft observed the saturnian magnetosphere from January 2004 until Saturn orbit insertion (SOI) on 1 July 2004. The MIMI sensors observed frequent energetic particle activity in interplanetary space for several months before SOI. When the imaging sensor was switched to its energetic neutral atom (ENA) operating mode on 20 February 2004, at approximately 10(3) times Saturn's radius RS (0.43 astronomical units), a weak but persistent signal was observed from the magnetosphere. About 10 days before SOI, the magnetosphere exhibited a day-night asymmetry that varied with an approximately 11-hour periodicity. Once Cassini entered the magnetosphere, in situ measurements showed high concentrations of H+, H2+, O+, OH+, and H2O+ and low concentrations of N+. The radial dependence of ion intensity profiles implies neutral gas densities sufficient to produce high loss rates of trapped ions from the middle and inner magnetosphere. ENA imaging has revealed a radiation belt that resides inward of the D ring and is probably the result of double charge exchange between the main radiation belt and the upper layers of Saturn's exosphere.


Assuntos
Gases , Íons , Magnetismo , Saturno , Água , Atmosfera , Meio Ambiente Extraterreno , Hidrogênio , Nitrogênio , Oxigênio , Astronave , Análise Espectral
19.
Science ; 305(5692): 1933-6, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15448263

RESUMO

The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on board the Mars Express spacecraft found that solar wind plasma and accelerated ionospheric ions may be observed all the way down to the Mars Express pericenter of 270 kilometers above the dayside planetary surface. This is very deep in the ionosphere, implying direct exposure of the martian topside atmosphere to solar wind plasma forcing. The low-altitude penetration of solar wind plasma and the energization of ionospheric plasma may be due to solar wind irregularities or perturbations, to magnetic anomalies at Mars, or both.

20.
Nature ; 426(6962): 45-8, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14603311

RESUMO

The outer limit of the Solar System is often considered to be at the distance from the Sun where the solar wind changes from supersonic to subsonic flow. Theory predicts that a termination shock marks this boundary, with locations ranging from a few to over 100 au (1 Au approximately 1.5 x 10(8) km, the distance from Earth to the Sun). 'Pick-up ions' that originate as interstellar neutral atoms should be accelerated to tens of MeV at the termination shock, generating anomalous cosmic rays. Here we report a large increase in the intensity of energetic particles in the outer heliosphere, as measured by an instrument on the Voyager 1 spacecraft. We argue that the spacecraft exited the supersonic solar wind and passed into the subsonic region (possibly beyond the termination shock) on about 1 August 2002 at a distance of approximately 85 Au (heliolatitude approximately 34 degrees N), then re-entered the supersonic solar wind about 200 days later at approximately 87 au from the Sun. We show that the composition of the ions accelerated at the putative termination shock is that of anomalous cosmic rays and of interstellar pick-up ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...