Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542294

RESUMO

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Assuntos
Dermatite , Radiodermite , Neoplasias Cutâneas , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Pele/patologia , Radiodermite/patologia , Dermatite/patologia , Neoplasias Cutâneas/patologia , Quimiocinas/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1336492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510961

RESUMO

Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)ß to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.


Assuntos
Quimiocina CCL2 , Epidermodisplasia Verruciforme , MicroRNAs , Animais , Humanos , Camundongos , Quimiocina CCL2/metabolismo , Epidermodisplasia Verruciforme/metabolismo , Papillomavirus Humano , Queratinócitos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nutrients ; 16(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257148

RESUMO

BACKGROUND: Increasing evidence points at an important physiological role of the timekeeping system, known as the circadian clock (CC), regulating not only our sleep-awake rhythm but additionally many other cellular processes in peripheral tissues. It was shown in various cell types that environmental stressors, including ultraviolet B radiation (UV-B), modulate the expression of genes that regulate the CC (CCGs) and that these CCGs modulate susceptibility for UV-B-induced cellular damage. It was the aim of this pilot study to gain further insights into the CCs' putative role for UV-B-induced photocarcinogenesis of skin cancer. METHODS: Applying RT-PCR, we analyzed the expression of two core CCGs (brain and muscle ARNT-like 1 (Bmal1) and Period-2 (Per2)) over several time points (0-60 h) in HaCaT cells with and without 1,25-dihydroxyvitamin D (D3) and/or UV-B and conducted a cosinor analysis to evaluate the effects of those conditions on the circadian rhythm and an extended mixed-effects linear modeling to account for both fixed effects of experimental conditions and random inter-individual variability. Next, we investigated the expression of these two genes in keratinocytes representing different stages of skin photocarcinogenesis, comparing normal (Normal Human Epidermal Keratinocytes-NHEK; p53 wild type), precancerous (HaCaT keratinocytes; mutated p53 status), and malignant (Squamous Cell Carcinoma SCL-1; p53 null status) keratinocytes after 12 h under the same conditions. RESULTS: We demonstrated that in HaCaT cells, Bmal1 showed a robust circadian rhythm, while the evidence for Per2 was limited. Overall expression of both genes, but especially for Bmal1, was increased following UV-B treatment, while Per2 showed a suppressed overall expression following D3. Both UVB and 1,25(OH)2D3 suggested a significant phase shift for Bmal1 (p < 0.05 for the acrophase), while no specific effect on the amplitude could be evidenced. Differential effects on the expression of BMAL1 and Per2 were found when we compared different treatment modalities (UV-B and/or D3) or cell types (NHEK, HaCaT, and SCL-1 cells). CONCLUSIONS: Comparing epidermal keratinocytes representing different stages of skin photocarcinogenesis, we provide further evidence for an independently operating timekeeping system in human skin, which is regulated by UV-B and disturbed during skin photocarcinogenesis. Our finding that this pattern of circadian rhythm was differentially altered by treatment with UV-B, as compared with treatment with D3, does not support the hypothesis that the expression of these CCGs may be regulated via UV-B-induced synthesis of vitamin D but might be introducing a novel photoprotective property of vitamin D through the circadian clock.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/genética , Projetos Piloto , Fatores de Transcrição ARNTL/genética , Proteína Supressora de Tumor p53 , Vitamina D
4.
J Cancer Res Clin Oncol ; 149(7): 3623-3635, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35963900

RESUMO

PURPOSE: Strategies for Indolamine-2,3-dioxygenase 1 (IDO1) inhibition in cancer immunotherapy once produced encouraging results, but failed in clinical trials. Recent evidence indicates that immune cells in the tumour microenvironment, especially macrophages, contribute to immune dysregulation and therefore might play a critical role in drug resistance. METHODS: In this study, we investigated the significance of IDO1 expressing immune cells in primary tumours and corresponding lymph node metastases (LNMs) in oral squamous cell carcinoma (OSCC) by immunohistochemistry. The link between IDO1 and macrophages was investigated by flow cytometry in tumour tissue, healthy adjacent tissue and peripheral blood mononuclear cells (PBMCs). IDO1 activity (measured as Kynurenine/Tryptophan ratio) was assessed by ELISAs. RESULTS: High IDO1 expression in tumour-infiltrating immune cells was significantly correlated with advanced stages [Spearman's rank correlation (SRC), p = 0.027] and reduced progression-free survival (multivariate Cox regression, p = 0.034). IDO1 was significantly higher expressed in PBMCs of patients in advanced stages than in healthy controls (ANOVA, p < 0.05) and IDO1+ macrophages were more abundant in intratumoural areas than peritumoural (t test, p < 0.001). IDO1 expression in PBMCs was significantly correlated with IDO1 activity in serum (SRC, p < 0.05). IDO1 activity was significantly higher in patients with LNMs (t test, p < 0.01). CONCLUSION: All in all, IDO1 expressing immune cells, especially macrophages, are more abundant in advanced stages of OSCC and are associated with reduced progression-free survival. Further investigations are needed to explore their role in local and systemic immune response. The IDO1 activity might be a suitable biomarker of metastasis in OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Leucócitos Mononucleares/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , Microambiente Tumoral
5.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230558

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is suggested to hamper antitumor immune response in multiple cancers. However, the role of TREM2 in oral squamous cell carcinoma (OSCC) and its expression in tumor-associated macrophages (TAMs) are unknown. In this study, TREM2 expression was analyzed in the primary tumors and corresponding lymph-node metastases of OSCC patients via immunohistochemistry on tissue microarrays. Human peripheral blood mononuclear cells (PBMCs) and single-cell suspensions of tumor and healthy adjacent tissues were analyzed for the presence of TREM2+ macrophages and TAMs using flow cytometry. The serum levels of soluble TREM2 (sTREM2) were quantified using an enzyme-linked immunosorbent assay. High TREM2 expression was associated with advanced UICC stages (Spearman's rank correlation (SRC), p = 0.04) and significantly reduced survival rates in primary tumors (multivariate Cox regression, progression-free survival: hazard ratio (HR) of 2.548, 95% confidence interval (CI) of 1.089−5.964, p = 0.028; overall survival: HR of 2.17, 95% CI of 1.021−4.613, p = 0.044). TREM2 expression was significantly increased in the PBMCs of OSCC patients in UICC stage IV compared with healthy controls (ANOVA, p < 0.05). The serum levels of sTREM2 were higher in advanced UICC stages, but they narrowly missed significance (SRC, p = 0.059). We demonstrated that TREM2 was multi-factorially associated with advanced stages and inferior prognosis in OSCC patients and that it could serve as a prognostic biomarker in OSCC patients. Targeting TREM2 has the potential to reshape the local and systemic immune landscape for the potential enhancement of patients' prognosis.

6.
EJHaem ; 3(3): 739-747, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051037

RESUMO

Burkitt lymphoma (BL) represents the most aggressive B-cell-lymphoma. Beside the hallmark of IG-MYC-translocation, surface B-cell receptor (BCR) is expressed, and mutations in the BCR pathway are frequent. Coincidental infections in endemic BL, and specific extra-nodal sites suggest antigenic triggers. To explore this hypothesis, BCRs of BL cell lines and cases were screened for reactivities against a panel of bacterial lysates, lysates of Plasmodium falciparum, a custom-made virome array and against self-antigens, including post-translationally modified antigens. An atypically modified, SUMOylated isoform of Bystin, that is, SUMO1-BYSL was identified as the antigen of the BCR of cell line CA46. SUMO1-BYSL was exclusively expressed in CA46 cells with K139 as site of the SUMOylation. Secondly, an atypically acetylated isoform of HSP40 was identified as the antigen of the BCR of cell line BL41. K104 and K179 were the sites of immunogenic acetylation, and the acetylated HSP40 isoform was solely present in BL41 cells. Functionally, addition of SUMO1-BYSL and acetylated HSP40 induced BCR pathway activation in CA46 and BL41 cells, respectively. Accordingly, SUMO1-BYSL-ETA' immunotoxin, produced by a two-step intein-based conjugation, led to the specific killing of CA46 cells. Autoantibodies directed against SUMO1-BYSL were found in 3 of 14 (21.4%), and autoantibodies against acetylated HSP40 in 1/14(7.1%) patients with sporadic Burkitt-lymphoma. No reactivities against antigens of the infectious agent spectrum could be observed. These results indicate a pathogenic role of autoreactivity evoked by immunogenic post-translational modifications in a subgroup of sporadic BL including two EBV-negative BL cell lines.

7.
Lancet Rheumatol ; 4(5): e329-e337, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35368387

RESUMO

Background: Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious complication of infection with SARS-CoV-2. A possible involvement of pathogenetically relevant autoantibodies has been discussed. Recently, neutralising autoantibodies against inflammatory receptor antagonists progranulin and interleukin-1 receptor antagonist (IL-1Ra) were found in adult patients with critical COVID-19. The aim of this study was to investigate the role of such autoantibodies in MIS-C. Methods: In this multicentre, retrospective, cohort study, plasma and serum samples were collected from patients (0-18 years) with MIS-C (as per WHO criteria) treated at five clinical centres in Germany and Spain. As controls, we included plasma or serum samples from children with Kawasaki disease, children with inactive systemic juvenile idiopathic arthritis, and children with suspected growth retardation (non-inflammatory control) across four clinical centres in Germany and Spain (all aged ≤18 years). Serum samples from the CoKiBa trial were used as two further control groups, from healthy children (negative for SARS-CoV-2 antibodies) and children with previous mild or asymptomatic COVID-19 (aged ≤17 years). MIS-C and control samples were analysed for autoantibodies against IL-1Ra and progranulin, and for IL-1Ra concentrations, by ELISA. Biochemical analysis of plasma IL-1Ra was performed with native Western blots and isoelectric focusing. Functional activity of the autoantibodies was examined by an in vitro IL-1ß-signalling reporter assay. Findings: Serum and plasma samples were collected between March 6, 2011, and June 2, 2021. Autoantibodies against IL-1Ra could be detected in 13 (62%) of 21 patients with MIS-C (11 girls and ten boys), but not in children with Kawasaki disease (n=24; nine girls and 15 boys), asymptomatic or mild COVID-19 (n=146; 72 girls and 74 boys), inactive systemic juvenile idiopathic arthritis (n=10; five girls and five boys), suspected growth retardation (n=33; 13 girls and 20 boys), or in healthy controls (n=462; 230 girls and 232 boys). Anti-IL-1Ra antibodies in patients with MIS-C belonged exclusively to the IgG1 subclass, except in one patient who had additional IL-1Ra-specific IgM antibodies. Autoantibodies against progranulin were only detected in one (5%) patient with MIS-C. In patients with MIS-C who were positive for anti-IL-1Ra antibodies, free plasma IL-1Ra concentrations were reduced, and immune-complexes of IL-1Ra were detected. Notably, an additional, hyperphosphorylated, transiently occurring atypical isoform of IL-1Ra was observed in all patients with MIS-C who were positive for anti-IL-1Ra antibodies. Anti-IL-1Ra antibodies impaired IL-1Ra function in reporter cell assays, resulting in amplified IL-1ß signalling. Interpretation: Anti-IL-1Ra autoantibodies were observed in a high proportion of patients with MIS-C and were specific to these patients. Generation of these autoantibodies might be triggered by an atypical, hyperphosphorylated isoform of IL-1Ra. These autoantibodies impair IL-1Ra bioactivity and might thus contribute to increased IL-1ß-signalling in MIS-C. Funding: NanoBioMed fund of the University of Saarland, José Carreras Center for Immuno and Gene Therapy, Dr Rolf M Schwiete Stiftung, Staatskanzlei Saarland, German Heart Foundation, Charity of the Blue Sisters, Bavarian Ministry of Health, the Center for Interdisciplinary Clinical Research at University Hospital Münster, EU Horizon 2020.

8.
Anticancer Res ; 38(2): 1209-1216, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29374759

RESUMO

While nuclear cofactors that contribute to vitamin D receptor (VDR)-mediated gene transcription, including retinoid X receptors, nuclear co-activators and co-repressors, have been extensively investigated, little is known about cytoplasmic VDR-binding partners and the physiological relevance of their interaction. To gain new insight into this topic, we isolated whole-cell protein extracts of 1,25-dihydroxyvitamin D3 stimulated and UV-B-irradiated vs. non-irradiated HEK 293T cells transfected with a plasmid called pURB VDR C-Term TAP tag. VDR complex was purified by tandem affinity purification (TAP). The nuclear tumor-suppressor protein p53 and its negative regulator novel INHAT repressor (NIR), in addition to 43 other nuclear or cytoplasmatic VDR binding partners, were identified using nano high-performance liquid chromatography-electrospray ionization tandem mass spectrometric analysis. VDR binding to p53 was confirmed by western blot analysis. Future studies are required to further elucidate the functional significance of these interactions.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Mapas de Interação de Proteínas , Receptores de Calcitriol/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Proteína Supressora de Tumor p53/metabolismo , Células HEK293 , Humanos , Nanotecnologia , Ligação Proteica , Raios Ultravioleta
9.
PLoS Pathog ; 13(6): e1006406, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640877

RESUMO

Patients suffering from Epidermodysplasia verruciformis (EV), a rare inherited skin disease, display a particular susceptibility to persistent infection with cutaneous genus beta-human papillomavirus (beta-HPV), such as HPV type 8. They have a high risk to develop non-melanoma skin cancer at sun-exposed sites. In various models evidence is emerging that cutaneous HPV E6 proteins disturb epidermal homeostasis and support carcinogenesis, however, the underlying mechanisms are not fully understood as yet. In this study we demonstrate that microRNA-203 (miR-203), a key regulator of epidermal proliferation and differentiation, is strongly down-regulated in HPV8-positive EV-lesions. We provide evidence that CCAAT/enhancer-binding protein α (C/EBPα), a differentiation-regulating transcription factor and suppressor of UV-induced skin carcinogenesis, directly binds the miR-203 gene within its hairpin region and thereby induces miR-203 transcription. Our data further demonstrate that the HPV8 E6 protein significantly suppresses this novel C/EBPα/mir-203-pathway. As a consequence, the miR-203 target ΔNp63α, a proliferation-inducing transcription factor, is up-regulated, while the differentiation factor involucrin is suppressed. HPV8 E6 specifically down-regulates C/EBPα but not C/EBPß expression at the transcriptional level. As shown in knock-down experiments, C/EBPα is regulated by the acetyltransferase p300, a well-described target of cutaneous E6 proteins. Notably, p300 bound significantly less to the C/EBPα regulatory region in HPV8 E6 expressing keratinocytes than in control cells as demonstrated by chromatin immunoprecipitation. In situ analysis confirmed congruent suprabasal expression patterns of C/EBPα and miR-203 in non-lesional skin of EV-patients. In HPV8-positive EV-lesions both factors are potently down-regulated in vivo further supporting our in vitro data. In conclusion our study has unraveled a novel p300/C/EBPα/mir-203-dependent mechanism, by which the cutaneous HPV8 E6 protein may expand p63-positive cells in the epidermis of EV-patients and disturbs fundamental keratinocyte functions. This may drive HPV-mediated pathogenesis and may potentially also pave the way for skin carcinogenesis in EV-patients.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transformação Celular Viral/genética , Regulação da Expressão Gênica/fisiologia , Queratinócitos/virologia , MicroRNAs/biossíntese , Proteínas Oncogênicas Virais/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Epidermodisplasia Verruciforme/complicações , Epidermodisplasia Verruciforme/virologia , Humanos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Queratinócitos/metabolismo , Infecções por Papillomavirus/complicações , Reação em Cadeia da Polimerase em Tempo Real
10.
Cell Cycle ; 15(8): 1108-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27097372

RESUMO

Recent findings strongly support a role for small regulatory RNAs in the regulation of human lifespan yet little information exists about the precise underlying mechanisms. Although extensive studies on model organisms have indicated that reduced activity of the nutrient response pathway, for example as a result of dietary restriction, can extend lifespan through the suppression of the protein kinase mechanistic target of rapamycin (mTOR), it still is subject of debate whether this mechanism is operative in humans as well. Here, we present findings indicating that human microRNA (miR)-496 targets 2 sites within the human mTOR 3'UTR. Coexpression of miR-496 with different fusion transcripts, consisting of the luciferase transcript and either wild-type mTOR 3'UTR or mTOR 3'UTR transcript with the miR-496 binding sites singly or combined mutated, confirmed this prediction and revealed cooperativity between the 2 binding sites. miR-496 reduced the mTOR protein level in HeLa-K cells, and the levels of miR-496 and mTOR protein were inversely correlated in Peripheral Blood Mononuclear Cells (PBMC), with old individuals (n = 40) harbouring high levels of miR-496 relative to young individuals (n = 40). Together, these findings point to the possibility that miR-496 is involved in the regulation of human aging through the control of mTOR.


Assuntos
Envelhecimento/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regiões 3' não Traduzidas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Doadores de Sangue , Regulação para Baixo/genética , Feminino , Células HeLa , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/metabolismo , Luciferases/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/genética , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Adulto Jovem
11.
Cell Cycle ; 14(16): 2619-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103464

RESUMO

Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas.


Assuntos
Produtos do Gene env/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Evolução Molecular , Gorilla gorilla/genética , Humanos , Pan troglodytes/genética , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Cell Cycle ; 14(13): 2003-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25969952

RESUMO

The E3 ubiquitin ligase and transcriptional repressor MDM2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors. Herein, we report that vitamin D receptor (VDR), another transcriptional regulator and probably, tumor suppressor, is also bound and inhibited by MDM2. This interaction was not affected by vitamin D ligand. VDR was ubiquitylated in the cell and its steady-state level was controlled by the proteasome. Strikingly, overproduced MDM2 reduced the level of VDR whereas knockdown of endogenous MDM2 increased the level of VDR. In addition to ubiquitin-marking proteins for degradation, MDM2, once recruited to promoters by DNA-binding interaction partners, can inhibit the transactivation of genes. Transient transfections with a VDR-responsive luciferase reporter revealed that low levels of MDM2 potently suppress VDR-mediated transactivation. Conversely, knockdown of MDM2 resulted in a significant increase of transcript from the CYP24A1 and p21 genes, noted cellular targets of transactivation by liganded VDR. Our findings suggest that MDM2 negatively regulates VDR in some analogy to p53.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Linhagem Celular , Humanos , Ligação Proteica/fisiologia
13.
Mob DNA ; 6: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750667

RESUMO

BACKGROUND: Human endogenous retroviruses of the HERV-K(HML-2) group have been associated with the development of tumor diseases. Various HERV-K(HML-2) loci encode retrovirus-like proteins, and expression of such proteins is upregulated in certain tumor types. HERV-K(HML-2)-encoded Rec and Np9 proteins interact with functionally important cellular proteins and may contribute to tumor development. Though, the biological role of HERV-K(HML-2) transcription and encoded proteins in health and disease is less understood. We therefore investigated transcription specifically of HERV-K(HML-2) rec and np9 mRNAs in a panel of normal human tissues. RESULTS: We obtained evidence for rec and np9 mRNA being present in all examined 16 normal tissue types. A total of 18 different HERV-K(HML-2) loci were identified as generating rec or np9 mRNA, among them loci not present in the human reference genome and several of the loci harboring open reading frames for Rec or Np9 proteins. Our analysis identified additional alternative splicing events of HERV-K(HML-2) transcripts, some of them encoding variant Rec/Np9 proteins. We also identified a second HERV-K(HML-2) locus formed by L1-mediated retrotransposition that is likewise transcribed in various human tissues. CONCLUSIONS: HERV-K(HML-2) rec and np9 transcripts from different HERV-K(HML-2) loci appear to be present in various normal human tissues. It is conceivable that Rec and Np9 proteins and variants of those proteins are part of the proteome of normal human tissues and thus various cell types. Transcription of HERV-K(HML-2) may thus also have functional relevance in normal human cell physiology.

14.
Front Physiol ; 5: 166, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24917821

RESUMO

P53 and its family members have been implicated in the direct regulation of the vitamin D receptor (VDR). Vitamin D- and p53-signaling pathways have a significant impact on spontaneous or carcinogen-induced malignant transformation of cells, with VDR and p53 representing important tumor suppressors. VDR and the p53/p63/p73 proteins all function typically as receptors or sensors that turn into transcriptional regulators upon stimulus, with the main difference being that the nuclear VDR is activated as a transcription factor after binding its naturally occurring ligand 1,25-dihydroxyvitamin D with high affinity while the p53 family of transcription factors, mostly in the nucleoplasm, responds to a large number of alterations in cell homeostasis commonly referred to as stress. An increasing body of evidence now convincingly demonstrates a cross-talk between vitamin D- and p53-signaling that occurs at different levels, has genome-wide implications and that should be of high importance for many malignancies, including non-melanoma skin cancer. One interaction involves the ability of p53 to increase skin pigmentation via POMC derivatives including alpha-MSH and ACTH. Pigmentation protects the skin against UV-induced DNA damage and skin carcinogenesis, yet on the other hand reduces cutaneous synthesis of vitamin D. A second level of interaction may be through the ability of 1,25-dihydroxyvitamin D to increase the survival of skin cells after UV irradiation. UV irradiation-surviving cells show significant reductions in thymine dimers in the presence of 1,25-dihydroxyvitamin D that are associated with increased nuclear p53 protein expression, and significantly reduced NO products. A third level of interaction is documented by the ability of vitamin D compounds to regulate the expression of the murine double minute 2 (MDM2) gene in dependence of the presence of wild-type p53. MDM2 has a well-established role as a key negative regulator of p53 activity. Finally, p53 and family members have been implicated in the direct regulation of VDR. This overview summarizes some of the implications of the cross-talk between vitamin D- and p53-signaling for carcinogenesis in the skin and other tissues.

15.
Blood ; 123(13): 1980-1, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24677401

RESUMO

In this issue of Blood, Yakimchuk and colleagues show that estrogen receptor ß (ERß) signaling can act tumor-suppressive predominantly through the regulation of genes by ERß in the tumor, not in the microenvironment, and point out new therapeutic strategies.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Receptor beta de Estrogênio/agonistas , Linfoma/tratamento farmacológico , Linfoma/patologia , Neovascularização Patológica/tratamento farmacológico , Nitrilas/uso terapêutico , Propionatos/uso terapêutico , Animais , Humanos , Masculino
16.
Nucleic Acids Res ; 42(6): 3565-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24413661

RESUMO

NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ubiquitinação
17.
Cell Cycle ; 12(15): 2479-92, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23839035

RESUMO

The inflammation regulating transcription factor NFκB and the tumor-suppressing transcription factor p53 can act as functional antagonists. Chronic inflammation (NFκB activity) may contribute to the development of cancer through the inhibition of p53 function, while, conversely, p53 activity may dampen inflammation. Here we report that the E3 ubiquitin ligase MDM2, whose gene is transcriptionally activated by both NFκB and p53, can bind and inhibit the p65RelA subunit of NFκB. The interaction is mediated through the N-terminal and the acidic/zinc finger domains of MDM2 on the one hand and through the N-terminal Rel homology domain of p65RelA on the other hand. Co-expression of MDM2 and p65RelA caused ubiquitination of the latter in the nucleus, and this modification was dependent of a functional MDM2 RING domain. Conversely, inhibition of endogenous MDM2 by small-molecule inhibitors or siRNA significantly reduced the ubiquitination of ectopic and endogenous p65RelA. MDM2 was able to equip p65RelA with mutated ubiquitin moieties capable of multiple monoubiquitination but incapable of polyubiquitination; moreover, MDM2 failed to destabilize p65RelA detectably, suggesting that the ubiquitin modification of p65RelA by MDM2 was mostly regulatory rather than stability-determining. MDM2 inhibited the NFκB-mediated transactivation of a reporter gene and the binding of NFκB to its DNA binding motif in vitro. Finally, knockdown of endogenous MDM2 increased the activity of endogenous NFκB as a transactivator. Thus, MDM2 can act as a direct negative regulator of NFκB by binding and inhibiting p65RelA.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição RelA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-6/metabolismo , Inibidor de NF-kappaB alfa , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Ativação Transcricional , Ubiquitinação
18.
Cancer Immunol Immunother ; 62(7): 1211-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23619976

RESUMO

EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.


Assuntos
Antígenos de Neoplasias/análise , Linfócitos B/virologia , Vacinas Anticâncer/imunologia , Neoplasias/terapia , Células Apresentadoras de Antígenos/imunologia , Azacitidina/farmacologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Interferon gama/imunologia , Melanoma , RNA Mensageiro/biossíntese , Telomerase/metabolismo , Telômero , Fator de Necrose Tumoral alfa/imunologia , Ácido Valproico/farmacologia , Vorinostat
19.
Adv Exp Med Biol ; 727: 223-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22399351

RESUMO

Notch 1 to 4 and the p53 clan, comprising p53, p63 and p73 plus numerous isoforms thereof, are gene transcription regulators that are critically involved in various aspects of cell differentiation, stem cell maintenance and tumour suppression. It is thus perhaps no surprise that extensive crosstalk between the Notch and p53 pathways is implemented during these processes. Typically, Notch together with p53 and even more so with transactivation competent p63 or p73, drives differentiation, whereas Notch combined with transactivation impaired p63 or p73 helps maintain undifferentiated stem cell compartments. With regard to cancer, it seems that Notch acts as a tumour suppressor in cellular contexts where Notch signalling supports p53 activation and both together can bring on its way an anti-proliferative programme of differentiation, senescence or apoptosis. In contrast, Notch often acts as an oncoprotein in contexts where it suppresses p53 activation and activity and where differentiation is unwanted. It is no accident that the latter pathways-the inhibition by Notch of p53 and differentiation-are operative in somatic stem cells as well as in tumour cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Camundongos , Proteína Tumoral p73
20.
J Neurooncol ; 104(3): 715-27, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21607667

RESUMO

Previous results had documented oncolytic capacity of reovirus, parvovirus and Newcastle disease virus (NDV) on several tumor cell types. To test whether combinations of these viruses may increase this capacity, human U87- and U373-glioblastoma cells, in vitro or xenografted into immuno-compromised mice, were subjected to simultaneous double infections and analyzed. Our results show that reovirus (serotype-3) plus NDV (Hitcher-B1) and reovirus plus parvovirus-H1 lead to a significant increase in tumor cell killing in vitro in both cell lines (Kruskal-Wallis test, P < 0.01) and in vivo. Immunofluorescence and flow cytometry analyses demonstrated the simultaneous replication of the viruses in nearly all cells (>95%) after combined infection. These data thus indicate that a synergistic anti-tumor effect can be achieved by the combined infection with oncolytic viruses.


Assuntos
Glioma/virologia , Vírus da Doença de Newcastle/fisiologia , Vírus Oncolíticos/fisiologia , Parvovirus/fisiologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Neoplasias Encefálicas , Morte Celular , Linhagem Celular Tumoral , Meios de Cultura , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Glioma/patologia , Humanos , Camundongos , Camundongos SCID , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , Parvovirus/genética , Sais de Tetrazólio , Tiazóis , Carga Viral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...