Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Eur J Cancer ; 202: 113976, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484692

RESUMO

BACKGROUND: Effective treatment options are limited for patients with advanced melanoma who have progressed on immune checkpoint inhibitors (ICI) and targeted therapies (TT). Preclinical models support the combination of ICI with TT; however, clinical trials evaluating the efficacy of triplet combinations in first-line setting showed limited advantage compared to TT only. METHODS: We conducted a retrospective, multicenter study, that included patients with advanced melanoma who were treated with BRAF/MEK inhibitors in combination with an anti-PD-(L)1 antibody (triplet therapy) after failure of at least one anti-PD-(L)1-based therapy and one TT in seven major melanoma centers between February 2016 and July 2022. RESULTS: A total of 48 patients were included, of which 32 patients, 66.7% had brain metastases, 37 patients (77.1%) had three or more metastatic organs and 21 patients (43.8%) had three or more treatment lines. The median follow-up time was 31.4 months (IQR, 22.27-40.45 months). The treatment with triplet therapy resulted in an ORR of 35.4% (n = 17) and a DCR of 47.9% (n = 23). The median DOR was 5.9 months (range, 3.39-14.27 months). Patients treated with BRAF/MEK inhibitors as the last treatment line showed a slightly lower ORR (29.6%) compared to patients who received ICI or chemotherapy last (ORR: 42.9%). Grade 3-4 treatment-related adverse events occurred in 25% of patients (n = 12), with seven patients (14.6%) requiring discontinuation of treatment with both or either drug. CONCLUSIONS: Triplet therapy has shown activity in heavily pretreated patients with advanced melanoma and may represent a potential treatment regimen after failure of ICI and TT.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/terapia , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases/efeitos adversos , Mutação
2.
Eur J Cancer ; 200: 113536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306840

RESUMO

PURPOSE: The interaction of gut microbiome and immune system is being studied with increasing interest. Disturbing factors, such as antibiotics may impact the immune system via gut and interfere with tumor response to immune checkpoint blockade (ICB). METHODS: In this multicenter retrospective cohort study exclusively treatment-naïve patients with cutaneous or mucosal melanoma treated with first-line anti-PD-1 based ICB for advanced, non-resectable disease between 06/2013 and 09/2018 were included. Progression-free (PFS), and overall survival (OS) according to antibiotic exposure (within 60 days prior to ICB and after the start of ICB vs. no antibiotic exposure) were analyzed. To account for immortal time bias, data from patients with antibiotics during ICB were analyzed separately in the time periods before and after start of antibiotics. RESULTS: Among 578 patients with first-line anti-PD1 based ICB, 7% of patients received antibiotics within 60 days prior to ICB and 19% after starting ICB. Antibiotic exposure prior to ICB was associated with worse PFS (adjusted HR 1.75 [95% CI 1.22-2.52]) and OS (adjusted HR 1.64 [95% CI 1.04-2.58]) by multivariate analysis adjusting for potential confounders. The use of antibiotics after the start of ICB had no effect on either PFS (adjusted HR 1.19; 95% CI 0.89-1.60) or OS (adjusted HR 1.08; 95% CI 0.75-1.57). CONCLUSIONS: Antibiotic exposure within 60 days prior to ICB seems to be associated with worse PFS and OS in melanoma patients receiving first-line anti-PD1 based therapy, whereas antibiotics after the start of ICB do not appear to affect PFS or OS.


Assuntos
Antibacterianos , Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Antibacterianos/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Estudos Retrospectivos , Resultado do Tratamento
3.
iScience ; 27(1): 108596, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174322

RESUMO

Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.

4.
EBioMedicine ; 96: 104774, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660535

RESUMO

BACKGROUND: PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. METHODS: Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28-8; cutoff ≥5%) and stratified by tissue type. FINDINGS: Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138-0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311-1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310-0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307-0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467-1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305-0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555-1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698-1.681; P = 0.72). INTERPRETATION: For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. FUNDING: Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA).


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Neoplasias Cutâneas , Humanos , Antígeno B7-H1/metabolismo , Estudos de Coortes , Imunoterapia , Melanoma/imunologia , Melanoma/terapia , Prognóstico , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico
5.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656187

RESUMO

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Humanos , Multiômica , Proteômica , Astrocitoma/genética , Neoplasias Encefálicas/genética , Potenciais de Ação
7.
Nat Cancer ; 4(9): 1292-1308, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525015

RESUMO

Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.


Assuntos
Interleucina-17 , Melanoma , Humanos , Interleucina-17/genética , Interleucina-17/uso terapêutico , Antígeno CTLA-4/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética
8.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444558

RESUMO

Available 4- and 5-year updates for progression-free and for overall survival demonstrate a lasting clinical benefit for melanoma patients receiving anti-PD-directed immune checkpoint inhibitor therapy. However, at least one-half of the patients either do not respond to therapy or relapse early or late following the initial response to therapy. Little is known about the reasons for primary and/or secondary resistance to immunotherapy and the patterns of relapse. This review, prepared by an interdisciplinary expert panel, describes the assessment of the response and classification of resistance to PD-1 therapy, briefly summarizes the potential mechanisms of resistance, and analyzes the medical needs of and therapeutic options for melanoma patients resistant to immune checkpoint inhibitors. We appraised clinical data from trials in the metastatic, adjuvant and neo-adjuvant settings to tabulate frequencies of resistance. For these three settings, the role of predictive biomarkers for resistance is critically discussed, as well as are multimodal therapeutic options or novel immunotherapeutic approaches which may help patients overcome resistance to immune checkpoint therapy. The lack of suitable biomarkers and the currently modest outcomes of novel therapeutic regimens for overcoming resistance, most of them with a PD-1 backbone, support our recommendation to include as many patients as possible in novel or ongoing clinical trials.

9.
Eur J Cancer ; 191: 112957, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487400

RESUMO

PURPOSE: Clinical trials demonstrated significantly improved recurrence-free survival (RFS) of melanoma patients receiving adjuvant treatment. As data from controlled trials are based on selected populations, we investigated adjuvantly treated stage III melanoma patients under real-world conditions. PATIENTS AND METHODS: In a prior multicenter cohort study, stage III-IV melanoma patients were analysed for their choice of adjuvant therapy. In this follow-up study, we examined RFS, overall and melanoma-specific survival (MSS) and response to the subsequent treatment of 589 stage III patients (232 BRAF-mutated) receiving adjuvant PD-1 inhibitors (PD1; n = 479) or targeted therapy (TT; n = 110). RESULTS: The median follow-up of the total cohort was 25.7 months. The main reason for premature discontinuation of adjuvant therapy was disease progression in PD1- (28.8%, n = 138/479) and adverse events in TT-treated patients (28.2%, n = 31/110). Among BRAF-mutated patients, RFS at 24 months was 49% (95% CI 40.6-59.0%) for PD1- and 67% (95% CI 58-77%) for TT-treated patients. The risk of recurrence was higher for BRAF-mutated PD1 than TT (hazard ratio 1.99; 95% CI 1.34-2.96; hazard ratio adjusted for age, sex and tumour stage, 2.21; 95% CI 1.48-3.30). Twenty-four months MSS was 87% (95% CI 81.0-94.1) for PD1 and 92% (95% CI 86.6-97.0) for TT. Response to subsequent systemic treatment for unresectable disease was 22% for all PD1- and 16% for TT-treated patients. CONCLUSIONS: PD1-treated patients had more and earlier recurrences than TT patients. In BRAF-mutated patients, adjuvant TT might prevent early recurrences more effectively than PD1 treatment. Management of recurrence despite adjuvant treatment is challenging, with low response to current therapeutic options.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Seguimentos , Proteínas Proto-Oncogênicas B-raf/genética , Estudos de Coortes , Melanoma/patologia , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Recidiva , Melanoma Maligno Cutâneo
10.
Clin Cancer Res ; 29(15): 2894-2907, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199727

RESUMO

PURPOSE: Recent studies have demonstrated HLA class II (HLA-II)-dependent killing of melanoma cells by cytotoxic CD4 T cells. We investigated evolution of HLA-II-loss tumors that escape cytotoxic CD4 T-cell activity and contribute to immunotherapy resistance. EXPERIMENTAL DESIGN: Melanoma cells from longitudinal metastases were studied for constitutive and IFN-inducible HLA-II expression, sensitivity towards autologous CD4 T cells, and immune evasion by HLA-II loss. Clinical significance of HLA-II-low tumors was determined by analysis of transcriptomic data sets from patients with immune checkpoint blockade (ICB). RESULTS: Analysis of longitudinal samples revealed strong intermetastatic heterogeneity in melanoma cell-intrinsic HLA-II expression and subclonal HLA-II loss. Tumor cells from early lesions either constitutively expressed HLA-II, sensitizing to cytotoxic CD4 T cells, or induced HLA-II and gained CD4 T-cell sensitivity in the presence of IFNγ. In contrast, late outgrowing subclones displayed a stable CD4 T-cell-resistant HLA-II-loss phenotype. These cells lacked not only constitutive but also IFNγ-inducible HLA-II due to JAK1/2-STAT1 pathway inactivation. Coevolution of JAK1/2 deficiency and HLA-II loss established melanoma cross-resistance to IFNγ and CD4 T cells, as detected in distinct stage IV metastases. In line with their immune-evasive phenotype, HLA-II-low melanomas showed reduced CD4 T-cell infiltrates and correlated with disease progression under ICB. CONCLUSIONS: Our study links melanoma resistance to CD4 T cells, IFNγ, and ICB at the level of HLA-II, highlighting the significance of tumor cell-intrinsic HLA-II antigen presentation in disease control and calling for strategies to overcome its downregulation for improvement of patient outcome.

11.
Microbiol Spectr ; 11(3): e0440122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212689

RESUMO

Skin microbiome dysbiosis with a Staphylococcus overabundance is a feature of actinic keratosis (AK) and squamous skin carcinoma (SCC) patients. The impact of lesion-directed treatments for AK lesions such as diclofenac (DIC) and cold atmospheric plasma (CAP) on the lesional microbiome is not established. We studied 321 skin microbiome samples of 59 AK patients treated with DIC 3% gel versus CAP. Microbial DNA from skin swabs taken before start of treatment (week 0), at the end of the treatment period (week 24), and 3 months after end of treatment (week 36) was analyzed after sequencing the V3/V4 region of the 16S rRNA gene. The relative abundance of S. aureus was scrutinized by a tuf gene specific TaqMan PCR assay. The total bacterial load and both, relative and absolute abundance of Staphylococcus genus was reduced upon both therapies at week 24 and 36 compared to week 0. Notably, the lesional microbiome of patients responding to CAP therapy at week 24 was characterized by an increased relative abundance of Corynebacterium genus compared to nonresponders. A higher relative abundance of Staphylococcus aureus at week 36 was a feature of patients classified as nonresponders for both treatments 12 weeks after therapy completion. The reduction of the Staphylococcus abundance after treatment of AK lesions and alterations linked to treatment response encourage further studies for investigation of the role of the skin microbiome for both, the carcinogenesis of epithelial skin cancer and its function as predictive therapeutic biomarker in AK. IMPORTANCE The relevance of the skin microbiome for development of actinic keratosis (AK), its progression into squamous skin cancer, and for field-directed treatment response is unknown. An overabundance of staphylococci characterizes the skin microbiome of AK lesions. In this study, analyses of the lesional microbiome from 321 samples of 59 AK patients treated with diclophenac gel versus cold atmospheric plasma (CAP) revealed a reduced total bacterial load and reduced relative and absolute Staphylococcus genus abundance upon both treatments. A higher relative Corynebacterium abundance was a feature of patients classified as responders at the end of CAP-treatment period (week 24) compared with nonresponders and the Staphylococcus aureus abundance of patients classified as responders 3 months after treatment completion was significantly lower than in nonresponders. The alterations of the skin microbiome upon AK treatment encourage further investigations for establishing its role for carcinogenesis and its function as predictive biomarker in AK.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Microbiota , Neoplasias Cutâneas , Humanos , Ceratose Actínica/tratamento farmacológico , Ceratose Actínica/patologia , Staphylococcus/genética , Staphylococcus aureus , RNA Ribossômico 16S/genética , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia
12.
J Eur Acad Dermatol Venereol ; 37(5): 907-913, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36606548

RESUMO

INTRODUCTION: Worldwide mass vaccination for COVID-19 started in late 2020. COVID-19 vaccines cause benign hypermetabolic lymphadenopathies. Clinical stratification between vaccine-associated benign lymphadenopathies and malignant lymphadenopathies through ultrasound, MRI or FDG PET-CT is not feasible. This leads to unnecessary lymph node biopsies, excisions and even radical lymph node dissections. Therefore, to avoid unnecessary surgeries, we assessed whether noninvasive multispectral optoacoustic tomography (MSOT) enables a better differentiation between benign and malignant lymphadenopathies. PATIENTS AND METHODS: All patients were vaccinated for COVID-19. We used MSOT to image deoxy- and oxyhaemoglobin levels in lymph nodes of tumour patients to assess metastatic status. MSOT imaging results were compared with standard ultrasound and pathological lymph node analysis. We also evaluated the influences of gender, age and time between vaccination and MSOT measurement of lymph nodes on the measured deoxy- and oxyhaemoglobin levels in patients with reactive lymph node changes. RESULTS: Multispectral optoacoustic tomography was able to identify cancer-free lymph nodes in vivo without a single false negative (33 total lymph nodes), with 100% sensitivity and 50% specificity. A statistically significant higher deoxyhaemoglobin content was detected in patients with tumour manifestations in the lymph node (p = 0.02). There was no statistically significant difference concerning oxyhaemoglobin (p = 0.65). Age, sex and time between vaccination and MSOT measurement had statistically non-significant impact on deoxy- and oxyhaemoglobin levels in patients with reactive lymph nodes. CONCLUSION: Here, we show that MSOT measurement is an advantageous clinical approach to differentiate between vaccine-associated benign lymphadenopathy and malignant lymph node metastases based on the deoxygenation level in lymph nodes.


Assuntos
COVID-19 , Coronavirus , Linfadenopatia , Humanos , Metástase Linfática , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Vacinas contra COVID-19 , Oxiemoglobinas , COVID-19/patologia , Linfadenopatia/diagnóstico por imagem , Linfadenopatia/etiologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Vacinação , Fluordesoxiglucose F18
13.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36239995

RESUMO

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
14.
Pigment Cell Melanoma Res ; 36(2): 252-258, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36382970

RESUMO

Large genome-scale studies are deposited in various public sequence repositories. However, their access and analysis can be non-trivial to infrequent users. Here, we present a new database connecting whole transcriptomes with clinical data for straight-forward access and analysis of patient-specific samples. Users can perform association tests of survival and gene expression across different cohorts, identify cell-type expressions, or correlate the presence of immune cells. In summary, we present a new data hub for bench scientists to perform replication and discovery studies.


Assuntos
Melanoma , Humanos , Transcriptoma
15.
Clin Transl Med ; 12(11): e1090, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320118

RESUMO

BACKGROUND: Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS: We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS: KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS: In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.


Assuntos
Ácidos Nucleicos Livres , Melanoma , Nevo , Humanos , Biomarcadores Tumorais/genética , Melanoma/genética , Melanoma/patologia , Ácidos Nucleicos Livres/genética , Mutação , Genótipo , RNA Mensageiro
16.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36156348

RESUMO

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Assuntos
Cálcio , Melanoma , Humanos , Cálcio/metabolismo , Proteômica , Melanoma/genética , Melanoma/metabolismo , Oxirredução , Fenótipo , Linhagem Celular Tumoral
17.
Lancet ; 400(10358): 1117-1129, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099927

RESUMO

BACKGROUND: The IMMUNED trial previously showed significant improvements in recurrence-free survival for adjuvant nivolumab plus ipilimumab as well as for adjuvant nivolumab alone in patients with stage IV melanoma with no evidence of disease after resection or radiotherapy. Here, we report the final analysis, including overall survival data. METHODS: IMMUNED was an investigator-sponsored, double-blind, placebo-controlled, three-arm, phase 2 trial conducted in 20 academic medical centres in Germany. Eligible patients were aged 18-80 years with stage IV melanoma with no evidence of disease after surgery or radiotherapy. Patients were randomly assigned (1:1:1) to either nivolumab plus ipilimumab (nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks for four doses followed by nivolumab 3 mg/kg every 2 weeks), nivolumab monotherapy (nivolumab 3 mg/kg every 2 weeks), or matching placebo, for up to 1 year. The primary endpoint was recurrence-free survival in the intention-to-treat population. Secondary endpoints were time-to-recurrence, overall survival, progression-free survival or recurrence-free survival 2 (in patients in the placebo group who crossed over to nivolumab monotherapy after experiencing disease recurrence), and safety endpoints. This trial is registered on ClinicalTrials.gov (NCT02523313), and is complete. FINDINGS: Between Sept 2, 2015, and Nov 20, 2018, 175 patients were enrolled in the study, and 167 were randomly assigned to receive either nivolumab plus ipilimumab (n=56), nivolumab plus ipilimumab-matching placebo (n=59), or double placebo control (n=52). At a median follow-up of 49·2 months (IQR 34·9-58·1), 4-year recurrence-free survival was 64·2% (95% CI 49·2-75·9) in the nivolumab plus ipilimumab group, 31·4% (19·7-43·8) in the nivolumab alone group, and 15·0% (6·7-26·6) in the placebo group. The hazard ratio (HR) for recurrence for the nivolumab plus ipilimumab group versus placebo was 0·25 (97·5% CI 0·13-0·48; p<0·0001), and for the nivolumab group versus placebo was 0·60 (0·36-1·00; p=0·024). Median overall survival was not reached in any treatment group. The HR for overall survival was significantly in favour of the nivolumab plus ipilimumab group versus placebo (HR 0·41; 95% CI 0·17-0·99; p=0·040), but not for the nivolumab group versus placebo (HR 0·75; 0·36-1·56; p=0·44). 4-year overall survival was 83·8% (95% CI 68·8-91·9) in the nivolumab plus ipilimumab group, 72·6% (57·4-83·2) in the nivolumab alone group, and 63·1% (46·9-75·6) in the placebo group. The median progression-free survival or recurrence-free survival 2 of patients in the placebo group who crossed over to nivolumab monotherapy after experiencing disease recurrence was not reached (95% CI 21·2 months to not reached). Rates of grade 3-4 treatment-related adverse events remained largely unchanged compared with our previous report, occurring in 71% (95% CI 57-82) of the nivolumab plus ipilimumab group, and 29% (95% CI 17-42) of patients receiving nivolumab alone. There were no treatment-related deaths. INTERPRETATION: Both active regimens continued to show significantly improved recurrence-free survival compared with placebo in patients with stage IV melanoma with no evidence of disease who were at high risk of recurrence. Overall survival was significantly improved for patients receiving nivolumab plus ipilimumab compared with placebo. Use of subsequent anti-PD-1-based therapy was high in patients in the placebo group after recurrence and most likely impacted the overall survival comparison of nivolumab alone versus placebo. The recurrence-free and overall survival benefit of nivolumab plus ipilimumab over placebo reinforces the change of practice already initiated for the treatment of patients with stage IV melanoma with no evidence of disease. FUNDING: Bristol-Myers Squibb.


Assuntos
Melanoma , Nivolumabe , Adjuvantes Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Método Duplo-Cego , Humanos , Ipilimumab/efeitos adversos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/cirurgia , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Nivolumabe/efeitos adversos
18.
Nat Commun ; 13(1): 3055, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650266

RESUMO

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Assuntos
Melanoma , Monofenol Mono-Oxigenase , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia
19.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35688555

RESUMO

BACKGROUND: Despite of various therapeutic strategies, treatment of patients with melanoma brain metastasis (MBM) still is a major challenge. This study aimed at investigating the impact of type and sequence of immune checkpoint blockade (ICB) and targeted therapy (TT), radiotherapy, and surgery on the survival outcome of patients with MBM. METHOD: We assessed data of 450 patients collected within the prospective multicenter real-world skin cancer registry ADOREG who were diagnosed with MBM before start of the first non-adjuvant systemic therapy. Study endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: Of 450 MBM patients, 175 (38.9%) received CTLA-4+PD-1 ICB, 161 (35.8%) PD-1 ICB, and 114 (25.3%) BRAF+MEK TT as first-line treatment. Additional to systemic therapy, 67.3% of the patients received radiotherapy (stereotactic radiosurgery (SRS); conventional radiotherapy (CRT)) and 24.4% had surgery of MBM. 199 patients (42.2%) received a second-line systemic therapy. Multivariate Cox regression analysis revealed the application of radiotherapy (HR for SRS: 0.213, 95% CI 0.094 to 0.485, p<0.001; HR for CRT: 0.424, 95% CI 0.210 to 0.855, p=0.016), maximal size of brain metastases (HR for MBM >1 cm: 1.977, 95% CI 1.117 to 3.500, p=0.019), age (HR for age >65 years: 1.802, 95% CI 1.016 to 3.197, p=0.044), and ECOG performance status (HR for ECOG ≥2: HR: 2.615, 95% CI 1.024 to 6.676, p=0.044) as independent prognostic factors of OS on first-line therapy. The type of first-line therapy (ICB vs TT) was not independently prognostic. As second-line therapy BRAF+MEK showed the best survival outcome compared with ICB and other therapies (HR for CTLA-4+PD-1 compared with BRAF+MEK: 13.964, 95% CI 3.6 to 54.4, p<0.001; for PD-1 vs BRAF+MEK: 4.587 95% CI 1.3 to 16.8, p=0.022 for OS). Regarding therapy sequencing, patients treated with ICB as first-line therapy and BRAF+MEK as second-line therapy showed an improved OS (HR for CTLA-4+PD-1 followed by BRAF+MEK: 0.370, 95% CI 0.157 to 0.934, p=0.035; HR for PD-1 followed by BRAF+MEK: 0.290, 95% CI 0.092 to 0.918, p=0.035) compared with patients starting with BRAF+MEK in first-line therapy. There was no significant survival difference when comparing first-line therapy with CTLA-4+PD-1 ICB with PD-1 ICB. CONCLUSIONS: In patients with MBM, the addition of radiotherapy resulted in a favorable OS on systemic therapy. In BRAF-mutated MBM patients, ICB as first-line therapy and BRAF+MEK as second-line therapy were associated with a significantly prolonged OS.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Cutâneas , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Antígeno CTLA-4/uso terapêutico , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Receptor de Morte Celular Programada 1/uso terapêutico , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf , Sistema de Registros , Neoplasias Cutâneas/tratamento farmacológico
20.
Cancer Res ; 82(2): 264-277, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810198

RESUMO

Emerging evidence indicates B-cell activating factor (BAFF, Tnfsf13b) to be an important cytokine for antitumor immunity. In this study, we generated a BAFF-overexpressing B16.F10 melanoma cell model and found that BAFF-expressing tumors grow more slowly in vivo than control tumors. The tumor microenvironment (TME) of BAFF-overexpressing tumors had decreased myeloid infiltrates with lower PD-L1 expression. Monocyte depletion and anti-PD-L1 antibody treatment confirmed the functional importance of monocytes for the phenotype of BAFF-mediated tumor growth delay. RNA sequencing analysis confirmed that monocytes isolated from BAFF-overexpressing tumors were characterized by a less exhaustive phenotype and were enriched for in genes involved in activating adaptive immune responses and NF-κB signaling. Evaluation of patients with late-stage metastatic melanoma treated with inhibitors of the PD-1/PD-L1 axis demonstrated a stratification of patients with high and low BAFF plasma levels. Patients with high BAFF levels experienced lower responses to anti-PD-1 immunotherapies. In summary, these results show that BAFF, through its effect on tumor-infiltrating monocytes, not only impacts primary tumor growth but can serve as a biomarker to predict response to anti-PD-1 immunotherapy in advanced disease. SIGNIFICANCE: The BAFF cytokine regulates monocytes in the melanoma microenvironment to suppress tumor growth, highlighting the importance of BAFF in antitumor immunity.


Assuntos
Fator Ativador de Células B/metabolismo , Tolerância Imunológica/genética , Melanoma Experimental/imunologia , Monócitos/imunologia , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/imunologia , Imunidade Adaptativa , Animais , Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/metabolismo , Células HEK293 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transfecção , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...