Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 323(3): E307-E318, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830688

RESUMO

Brown bears conserve muscle and bone mass during 6 mo of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of insulin-like growth factors (IGFs). In subadult Scandinavian brown bears, we observed that mean plasma IGF-1 and IGF-2 levels during hibernation were reduced to 36 ± 10% and 56 ± 15%, respectively, compared with the active state (n = 12). Western ligand blotting identified IGF-binding protein (IGFBP)-3 as the major IGFBP in the active state, whereas IGFBP-2 was codominant during hibernation. Acid labile subunit (ALS) levels in hibernation were reduced to 41±16% compared with the active state (n = 6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS levels were significantly reduced during hibernation (n = 6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, size-exclusion chromatography of bear plasma demonstrated a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Furthermore, we note that the major IGF-2 mRNA isoform expressed in livers in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 is replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modeling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin-binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.NEW & NOTEWORTHY Brown bears shift from circulating ternary IGF/IGFBP/ALS complexes in the active state to binary IGF/IGFBP complexes during hibernation, indicating increased tissue IGF-bioactivity. Furthermore, brown bears use a splice variant of IGF-2, suggesting increased bone-specific targeting of IGF anabolic signaling.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Fator de Crescimento Insulin-Like I , Ursidae , Animais , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Ursidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...