Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Clin Pathol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749660

RESUMO

AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a diagnosis of exclusion that can pose a challenge to the pathologist despite thorough clinical workup. Although several immunohistochemical markers have been proposed for iCCA, none of them reached clinical practice. We here assessed the combined usage of two promising diagnostic approaches, albumin in situ hybridisation (Alb-ISH) and C reactive protein (CRP) immunohistochemistry, for distinguishing iCCA from other adenocarcinoma primaries. METHODS: We conducted Alb-ISH and CRP immunohistochemistry in a large European iCCA cohort (n=153) and compared the results with a spectrum of other glandular adenocarcinomas of different origin (n=885). In addition, we correlated expression patterns with clinicopathological information and mutation data. RESULTS: Alb-ISH was highly specific for iCCA (specificity 98.8%) with almost complete negativity in perihilar CCA and only rare positives among other adenocarcinomas (sensitivity 69.5%). CRP identified the vast majority of iCCA cases (sensitivity 84.1%) at a lower specificity of 86.4%. Strikingly, the combination of CRP and Alb-ISH boosted the diagnostic sensitivity to 88.0% while retaining a considerable specificity of 86.1%. Alb-ISH significantly correlated with CRP expression, specific tumour morphologies and small or large duct iCCA subtypes. Neither Alb-ISH nor CRP was associated with iCCA patient survival. 16 of 17 recurrent mutations in either IDH1, IDH2 and FGFR2 affected Alb-ISH positive cases, while the only KRAS mutation corresponded to an Alb-ISH negative case. CONCLUSIONS: In conclusion, we propose a sequential diagnostic approach for iCCA, integrating CRP immunohistochemistry and Alb-ISH. This may improve the accuracy of CCA classification and pave the way towards a molecular-guided CCA classification.

2.
Gastroenterology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636680

RESUMO

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.

3.
Adv Sci (Weinh) ; : e2309010, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526177

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.

4.
J Hepatol ; 80(2): 293-308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450598

RESUMO

BACKGROUND & AIMS: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS: SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION: SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS: We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Glutamina , Neoplasias Hepáticas/genética , Hipóxia/genética , Transporte Biológico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética
5.
Sci Adv ; 9(51): eadh1442, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134284

RESUMO

Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.


Assuntos
Neoplasias Hepáticas , Mutações Sintéticas Letais , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Deleção Cromossômica , Aberrações Cromossômicas , Cromossomos , Sistemas CRISPR-Cas
6.
Hepatology ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916976

RESUMO

BACKGROUND AND AIMS: HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS: Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS: This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTßR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.

7.
Nat Cancer ; 4(9): 1362-1381, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679568

RESUMO

Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.


Assuntos
Adenocarcinoma , Terapia Neoadjuvante , Humanos , Citocromo P-450 CYP3A , Adjuvantes Imunológicos , Queratina-17 , Fenótipo
8.
Surg Obes Relat Dis ; 19(12): 1421-1434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666725

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are strongly associated with obesity, metabolic syndrome, and insulin resistance (IR). OBJECTIVE: The aim of this study was to investigate the effects of metabolic surgery on pancreatic beta cell function and IR in patients with obesity and NAFLD. SETTING: University Hospital, Germany. METHODS: Liver biopsies were taken intraoperatively from 112 patients undergoing sleeve gastrectomy (n = 68) or Roux-en-Y gastric bypass (n = 44) and analyzed histologically for the presence of simple steatosis (NAFL) or NASH. Clinical and biochemical parameters were collected over up to 2 years. Beta cell function and IR were assessed using the homeostasis model assessment of beta-cell function (HOMA2-%B) and insulin resistance (HOMA2-IR) index. RESULTS: NASH was present in 53.6% (n = 60) of the patients and NAFL in 25.9% (n = 29). Liver enzymes, adiponectin/leptin ratio, triglycerides, and HbA1C were improved at 6 months, 1, and 2 years after surgery. HOMA2-IR was significantly lower in patients without NAFLD while HOMA2-IR did not differ between patients with NAFL and/or NASH. HOMA2-%B was highest in the NAFLD group and lowest in patients with NASH. While there was no change in HOMA2-%B and HOMA2-IR in the No-NAFLD group, HOMA2-%B decreased and IR improved in the NAFL and NASH groups. CONCLUSION: Insufficient compensatory beta-cell function may contribute to the progression from NAFL alongside with IR to NASH. Our findings suggest that bariatric surgery decreases IR while at the same time reducing compensatory insulin oversecretion. These results are associated with beneficial changes in adipose tissue function after bariatric surgery.


Assuntos
Cirurgia Bariátrica , Resistência à Insulina , Células Secretoras de Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/cirurgia , Hepatopatia Gordurosa não Alcoólica/patologia , Resistência à Insulina/fisiologia , Obesidade/complicações , Insulina/metabolismo , Fígado/patologia
9.
Gastroenterology ; 165(5): 1262-1275, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562657

RESUMO

BACKGROUND & AIMS: Diagnosis of adenocarcinoma in the liver is a frequent scenario in routine pathology and has a critical impact on clinical decision making. However, rendering a correct diagnosis can be challenging, and often requires the integration of clinical, radiologic, and immunohistochemical information. We present a deep learning model (HEPNET) to distinguish intrahepatic cholangiocarcinoma from colorectal liver metastasis, as the most frequent primary and secondary forms of liver adenocarcinoma, with clinical grade accuracy using H&E-stained whole-slide images. METHODS: HEPNET was trained on 714,589 image tiles from 456 patients who were randomly selected in a stratified manner from a pool of 571 patients who underwent surgical resection or biopsy at Heidelberg University Hospital. Model performance was evaluated on a hold-out internal test set comprising 115 patients and externally validated on 159 patients recruited at Mainz University Hospital. RESULTS: On the hold-out internal test set, HEPNET achieved an area under the receiver operating characteristic curve of 0.994 (95% CI, 0.989-1.000) and an accuracy of 96.522% (95% CI, 94.521%-98.694%) at the patient level. Validation on the external test set yielded an area under the receiver operating characteristic curve of 0.997 (95% CI, 0.995-1.000), corresponding to an accuracy of 98.113% (95% CI, 96.907%-100.000%). HEPNET surpassed the performance of 6 pathology experts with different levels of experience in a reader study of 50 patients (P = .0005), boosted the performance of resident pathologists to the level of senior pathologists, and reduced potential downstream analyses. CONCLUSIONS: We provided a ready-to-use tool with clinical grade performance that may facilitate routine pathology by rendering a definitive diagnosis and guiding ancillary testing. The incorporation of HEPNET into pathology laboratories may optimize the diagnostic workflow, complemented by test-related labor and cost savings.

10.
EBioMedicine ; 93: 104657, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37348162

RESUMO

BACKGROUND: Differentiating intrahepatic cholangiocarcinomas (iCCA) from hepatic metastases of pancreatic ductal adenocarcinoma (PAAD) is challenging. Both tumours have similar morphological and immunohistochemical pattern and share multiple driver mutations. We hypothesised that DNA methylation-based machine-learning algorithms may help perform this task. METHODS: We assembled genome-wide DNA methylation data for iCCA (n = 259), PAAD (n = 431), and normal bile duct (n = 70) from publicly available sources. We split this cohort into a reference (n = 399) and a validation set (n = 361). Using the reference cohort, we trained three machine learning models to differentiate between these entities. Furthermore, we validated the classifiers on the technical validation set and used an internal cohort (n = 72) to test our classifier. FINDINGS: On the validation cohort, the neural network, support vector machine, and the random forest classifiers reached accuracies of 97.68%, 95.62%, and 96.5%, respectively. Filtering by anomaly detection and thresholds improved the accuracy to 99.07% (37 samples excluded by filtering), 96.22% (17 samples excluded), and 100% (44 samples excluded) for the neural network, support vector machine and random forest, respectively. Because of best balance between accuracy and number of predictable cases we tested the neural network with applied filters on the in-house cohort, obtaining an accuracy of 95.45%. INTERPRETATION: We developed a classifier that can differentiate between iCCAs, intrahepatic metastases of a PAAD, and normal bile duct tissue with high accuracy. This tool can be used for improving the diagnosis of pancreato-biliary cancers of the liver. FUNDING: This work was supported by Berlin Institute of Health (JCS Program), DKTK Berlin (Young Investigator Grant 2022), German Research Foundation (493697503 and 314905040 - SFB/TRR 209 Liver Cancer B01), and German Cancer Aid (70113922).


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Colangiocarcinoma , Humanos , Metilação de DNA , Algoritmos , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos
11.
Nucleic Acids Res ; 51(14): 7143-7162, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37351572

RESUMO

In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis. Many publications have concentrated on one type of DNA damage, but few have addressed the complete spectrum of FFPE-DNA damage. Here, we review mitigation strategies in (I) pre-analytical sample quality control, (II) DNA repair treatments, (III) analytical sample preparation and (IV) bioinformatic analysis of FFPE-DNA. We then provide recommendations that are tested and illustrated with DNA from 13-year-old liver specimens, one FFPE preserved and one fresh frozen, applying target-enriched sequencing. Thus, we show how DNA damage can be compensated, even when using low quantities (50 ng) of fragmented FFPE-DNA (DNA integrity number 2.0) that cannot be amplified well (Q129 bp/Q41 bp = 5%). Finally, we provide a checklist called 'ERROR-FFPE-DNA' that summarises recommendations for the minimal information in publications required for assessing fitness-for-purpose and inter-study comparison when using FFPE samples.


Assuntos
Análise de Sequência de DNA , DNA/genética , DNA/análise , Formaldeído , Inclusão em Parafina/métodos , Análise de Sequência de DNA/métodos , Fixação de Tecidos/métodos
12.
Oncogene ; 42(19): 1509-1523, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932115

RESUMO

Emerging evidence has indicated that peroxisome proliferator-activated receptor-gamma coactivator-1α (PPARGC1A) is involved in hepatocellular carcinoma (HCC). However, its detailed function and up- and downstream mechanisms are incompletely understood. In this study, we confirmed that PPAGC1A is lowly expressed in HCC and is associated with poor prognosis using large-scale public datasets and in-house cohorts. PPAGC1A was found to impair the progression and sensitivity of HCC to lenvatinib. Mechanistically, PPAGC1A repressed bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) by inhibiting WNT/ß-catenin signaling. BAMBI mediated the function of PPARGC1A and regulated ACSL5 through TGF-ß/SMAD signaling. PPARGC1A/BAMBI regulated ROS production and ferroptosis-related cell death by controlling ACSL5. PPARGC1A/BAMBI/ACSL5 axis was hypoxia-responsive. METTL3 and WTAP silenced PPARGC1A in an m6A-YTHDF2-dependent way under normoxia and hypoxia, respectively. Metformin restored PPARGC1A expression by reducing its m6A modification via inhibiting METTL3. In animal models and patient-derived organoids, consistent functional data of PPARGC1A/BAMBI/ACSL5 were observed. Conclusions: These findings provide new insights into the role of the aberrant PPARGC1A/BAMBI/ACSL5 axis in HCC. And the mechanism of PPARGC1A dysregulation was explained by m6A modification. Metformin may benefit HCC patients with PPARGC1A dysregulation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , PPAR gama
13.
Nat Rev Gastroenterol Hepatol ; 20(7): 462-480, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36755084

RESUMO

Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/terapia , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/terapia , Consenso , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia
14.
Oncogenesis ; 11(1): 69, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577757

RESUMO

Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF), which controls fundamental biological processes such as cell growth, migration, and differentiation. MRTF and SRF transcriptional activity play an important role in hepatocellular carcinoma (HCC) growth, which represents the second leading cause of cancer-related mortality in humans worldwide. We, therefore, searched for druggable targets in HCC that regulate MRTF/SRF transcriptional activity and can be exploited therapeutically for HCC therapy. We identified the G protein-coupled lysophosphatidic acid receptor 1 (LPAR1) as a novel interaction partner of MRTF-A and Filamin A (FLNA) using fluorescence resonance energy transfer-(FRET) and proximity ligation assay (PLA) in vitro in HCC cells and in vivo in organoids. We found that LPAR1 promotes FLNA phosphorylation at S2152 which enhances the complex formation of FLNA and MRTF-A, actin polymerization, and MRTF transcriptional activity. Pharmacological blockade or depletion of LPAR1 prevents FLNA phosphorylation and complex formation with MRTF-A, resulting in reduced MRTF/SRF target gene expression and oncogene-induced senescence. Thus, inhibition of the LPAR1-FLNA-MRTF-A interaction represents a promising strategy for HCC therapy.

15.
Elife ; 112022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255405

RESUMO

The Hippo signaling pathway controls cell proliferation and tissue regeneration via its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). The canonical pathway topology is characterized by sequential phosphorylation of kinases in the cytoplasm that defines the subcellular localization of YAP and TAZ. However, the molecular mechanisms controlling the nuclear/cytoplasmic shuttling dynamics of both factors under physiological and tissue-damaging conditions are poorly understood. By implementing experimental in vitro data, partial differential equation modeling, as well as automated image analysis, we demonstrate that nuclear phosphorylation contributes to differences between YAP and TAZ localization in the nucleus and cytoplasm. Treatment of hepatocyte-derived cells with hepatotoxic acetaminophen (APAP) induces a biphasic protein phosphorylation eventually leading to nuclear protein enrichment of YAP but not TAZ. APAP-dependent regulation of nuclear/cytoplasmic YAP shuttling is not an unspecific cellular response but relies on the sequential induction of reactive oxygen species (ROS), RAC-alpha serine/threonine-protein kinase (AKT, synonym: protein kinase B), as well as elevated nuclear interaction between YAP and AKT. Mouse experiments confirm this sequence of events illustrated by the expression of ROS-, AKT-, and YAP-specific gene signatures upon APAP administration. In summary, our data illustrate the importance of nuclear processes in the regulation of Hippo pathway activity. YAP and TAZ exhibit different shuttling dynamics, which explains distinct cellular responses of both factors under physiological and tissue-damaging conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Acetaminofen/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Proteínas Nucleares/metabolismo , Treonina/metabolismo , Serina/metabolismo
16.
Br J Cancer ; 127(9): 1603-1614, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068277

RESUMO

BACKGROUND: Intraductal papillary neoplasms (IPN) and biliary epithelial neoplasia (BilIN) are well-defined precursor lesions of biliary tract carcinoma (BTC). The aim of this study was to provide a comprehensive characterisation of the inflammatory microenvironment in BTC precursor lesions. METHODS: Immunohistochemistry was employed to assess tumour-infiltrating immune cells in tissue samples from patients, for whom precursor lesions were identified alongside invasive BTC. The spatiotemporal evolution of the immune microenvironment during IPN-associated carcinogenesis was comprehensively analysed using triplet sample sets of non-neoplastic epithelium, precursor lesion and invasive BTC. Immune-cell dynamics during IPN- and BilIN-associated carcinogenesis were subsequently compared. RESULTS: Stromal CD3+ (P = 0.002), CD4+ (P = 0.007) and CD8+ (P < 0.001) T cells, CD20+ B cells (P = 0.008), MUM1+ plasma cells (P = 0.012) and CD163+ M2-like macrophages (P = 0.008) significantly decreased in IPN compared to non-tumorous biliary epithelium. Upon transition from IPN to invasive BTC, stromal CD68+ (P = 0.001) and CD163+ (P < 0.001) macrophages significantly increased. In contrast, BilIN-driven carcinogenesis was characterised by significant reduction of intraepithelial CD8+ T-lymphocytic infiltration from non-tumorous epithelium via BilIN (P = 0.008) to BTC (P = 0.004). CONCLUSION: IPN and BilIN are immunologically distinct entities that undergo different immune-cell variations during biliary carcinogenesis. Intraepithelial CD8+ T-lymphocytic infiltration of biliary tissue decreased already at the IPN-precursor stage, whereas BilIN-associated carcinogenesis showed a slowly progressing reduction towards invasive carcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Sistema Biliar , Colangiocarcinoma , Humanos , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Sistema Biliar/patologia , Neoplasias do Sistema Biliar/patologia , Carcinogênese/patologia , Ductos Biliares Intra-Hepáticos/patologia , Análise Espaço-Temporal , Pigmentos Biliares , Microambiente Tumoral
17.
Liver Int ; 42(12): 2855-2870, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35983950

RESUMO

Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL , Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-xL and Mcl-1. Expression of Bcl-xL , Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-xL and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatment with specific small molecule inhibitors of Bcl-xL (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-xL induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-xL and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-xL in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-xL as a key protein in cell death resistance of CCA and may pave the way for clinical application.


Assuntos
Colangiocarcinoma , Proteína bcl-X , Humanos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Linhagem Celular Tumoral , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética
18.
Adv Sci (Weinh) ; 9(29): e2104291, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031387

RESUMO

Aberrant energy metabolism and cell cycle regulation both critically contribute to malignant cell growth and both processes represent targets for anticancer therapy. It is shown here that depletion of the AAA+-ATPase thyroid hormone receptor interacting protein 13 (Trip13) results in mitotic cell death through a combined mechanism linking lipid metabolism to aberrant mitosis. Diminished Trip13 levels in hepatocellular carcinoma cells result in insulin-receptor-/Akt-pathway-dependent accumulation of lipid droplets, which act as functional acentriolar microtubule organizing centers disturbing mitotic spindle polarity. Specifically, the lipid-droplet-coating protein perilipin 2 (Plin2) is required for multipolar spindle formation, induction of DNA damage, and mitotic cell death. Plin2 expression in different tumor cells confers susceptibility to cell death induced by Trip13 depletion as well as treatment with paclitaxel, a spindle-interfering drug commonly used against different cancers. Thus, assessment of Plin2 levels enables the stratification of tumor responsiveness to mitosis-targeting drugs, including clinically approved paclitaxel and Trip13 inhibitors currently under development.


Assuntos
Insulinas , Neoplasias Hepáticas , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Humanos , Insulinas/metabolismo , Lipídeos , Proteínas Mad2/metabolismo , Paclitaxel/farmacologia , Perilipina-2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
19.
Br J Cancer ; 127(8): 1540-1549, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35871236

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10-15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. METHODS: A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. RESULTS: Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. CONCLUSION: This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/tratamento farmacológico , Genômica , Humanos , Técnicas de Diagnóstico Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...