Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 158(1-2): 84-93, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-19828135

RESUMO

Nanocomposite polymer materials containing metal or metal oxide particles attract growing interest due to their specific unique combination of physical and electric behavior. Stoichometric triple interpolyelectrolyte-metal complexes (TIMC) are insoluble in water and in aqueous organic media and may include high content of metal ions; concentration of ions is easy to vary in such polymeric systems. Reduction of metal ions is a common method for obtaining nanoparticles. Interpolyelectrolyte complexes reveal high permeability for polar low-molecular substances and salts. Such swelling behavior is important for the reduction of metal ions included in these solids. The properties of triple interpolyelectrolyte-metal complexes and preparation of nanocomposites from these materials using various methods of metal ion reduction are discussed in this work.

2.
Faraday Discuss ; 128: 341-54; discussion 407-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15658782

RESUMO

Protonated poly(propylene imine) dendrimers (Astramol) of five generations: DAB-dendr-(NH2)x (where x=4, 8, 16, 32 or 64) are sorbed by slightly cross-linked polyanionic hydrogels: poly(sodium acrylate) and poly(sodium 2-acrylamido-2-methylpropane sulfonate). As a result highly swollen original hydrogel transforms into compact cross-linked polyelectrolyte-dendrimer complexes. Sorption of dendrimers by the hydrogels is a chemically drawn frontal diffusion process. Driving force comes from the gain in the free energy of interpolyelectrolyte coupling reaction between the charged dendrimer molecules and the oppositely charged hydrogel network, accompanied with entropically favourable release of low molecular salt into environment. The amount of a simple salt released is equivalent to a number of intermolecular salt bonds, formed between protonated dendrimers and hydrogel networks. Apparently the mechanism of dendrimer uptake involves a "relay-race" transfer of dendrimer polycations from one fragment of polyelectrolyte network to the other via interpolyelectrolyte exchange reaction. As a result "core-shell" constructs consisting of outer weakly swollen complex shell and highly swollen hydrogel core are formed at intermediate stages of the process. The rate of sorption is determined by the rate of the interpolyelectrolyte exchange reaction that is the rate of the formation of free fragments of polyelectrolyte network (vacancies) on the inner complex-hydrogel boundary. The amount of vacancies depends on the area of this boundary. Consequently kinetics of dendrimer uptake could not be fitted in terms of Fickian diffusion (except DAB-dendr-(NH2)4), but expressed in terms of the kinetic equation derived for a frontal heterogeneous reaction. Sorbed dendrimers of all studied generations at pH values ensuring complete protonation of primary and tertiary amine groups are closely packed in hydrogel networks, so that all dendrimer cationic units form ion pairs with anionic units of hydrogels. In other words polyanionic network fragments are able to penetrate into the interior of fully protonated DAB-dendr-(NH2)x species as it was earlier shown for flexible linear polyanions. In such case the ultimate amount of sorbed dendrimer molecules is always determined by the condition n(a)/N- = 1, where n(a) is the total number of dendrimer amine groups, N- is the number of the anionic hydrogel units. The latter is also true for the complex shell composition in the heterogeneous reacting samples formed at intermediate stages of dendrimers uptake. Variation of pH and sorption extent is an effective tool to control dendrimer distribution, self-organization and the final structure of dendrimer-hydrogel constructs.

3.
J Am Chem Soc ; 124(38): 11324-33, 2002 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-12236747

RESUMO

Interaction of salmon sperm DNA (300-500 bp) and ultrahigh molecular mass DNA (166 kbp) from bacteriophage T4dC with linear poly(N-diallyl-N-dimethylammonium chloride) (PDADMAC) and slightly cross-linked (#) PDADMAC (#PDADMAC) hydrogel in water has been studied by means of UV-spectroscopy, ultracentrifugation, atomic force, and fluorescence microscopy (FM). It is found that the linear polycation induced compaction of either native (double-stranded) or denatured (single-stranded) DNA by forming PDADMAC-DNA interpolyelectrolyte complexes (IPEC)s. At the same time, #PDADMAC hydrogel is able to distinguish between native and denatured DNA. Native DNA is adsorbed and captured in the hydrogel surface layer, while denatured DNA diffuses to the hydrogel interior until the whole hydrogel sample is transformed into the cross-linked IPEC. Both native and denatured DNA can be completely released from the hydrogel in appropriate conditions with no degradation by adding a low molecular salt. The data observed using conventional physicochemical methods with respect to DNA of a moderate molecular mass remarkably correlate with the pictures directly observed for ultrahigh molecular mass DNA in dynamics by using FM.


Assuntos
DNA/química , Hidrogéis/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Animais , Bacteriófago T4/química , Bacteriófago T4/genética , Cátions , Reagentes de Ligações Cruzadas/química , DNA de Cadeia Simples/química , DNA Viral/química , Concentração de Íons de Hidrogênio , Masculino , Microscopia de Força Atômica , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Salmão/genética , Espectrofotometria Ultravioleta , Espermatozoides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...