Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 14(1): 40-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725491

RESUMO

Weakly hydrated anions help to solubilize hydrophobic macromolecules in aqueous solutions, but small molecules comprising the same chemical constituents precipitate out when exposed to these ions. Here, this apparent contradiction is resolved by systematically investigating the interactions of NaSCN with polyethylene oxide oligomers and polymers of varying molecular weight. A combination of spectroscopic and computational results reveals that SCN- accumulates near the surface of polymers, but is excluded from monomers. This occurs because SCN- preferentially binds to the centre of macromolecular chains, where the local water hydrogen-bonding network is disrupted. These findings suggest a link between ion-specific effects and theories addressing how hydrophobic hydration is modulated by the size and shape of a hydrophobic entity.

3.
J Am Chem Soc ; 142(45): 19094-19100, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124825

RESUMO

Ion identity and concentration influence the solubility of macromolecules. To date, substantial effort has been focused on obtaining a molecular level understanding of specific effects for anions. By contrast, the role of cations has received significantly less attention and the underlying mechanisms by which cations interact with macromolecules remain more elusive. To address this issue, the solubility of poly(N-isopropylacrylamide), a thermoresponsive polymer with an amide moiety on its side chain, was studied in aqueous solutions with a series of nine different cation chloride salts as a function of salt concentration. Phase transition temperature measurements were correlated to molecular dynamics simulations. The results showed that although all cations were on average depleted from the macromolecule/water interface, more strongly hydrated cations were able to locally accumulate around the amide oxygen. These weakly favorable interactions helped to partially offset the salting-out effect. Moreover, the cations approached the interface together with chloride counterions in solvent-shared ion pairs. Because ion pairing was concentration-dependent, the mitigation of the dominant salting-out effect became greater as the salt concentration was increased. Weakly hydrated cations showed less propensity for ion pairing and weaker affinity for the amide oxygen. As such, there was substantially less mitigation of the net salting-out effect for these ions, even at high salt concentrations.

4.
Nat Chem ; 12(9): 814-825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747754

RESUMO

Phase separation of intrinsically disordered proteins (IDPs) is a remarkable feature of living cells to dynamically control intracellular partitioning. Despite the numerous new IDPs that have been identified, progress towards rational engineering in cells has been limited. To address this limitation, we systematically scanned the sequence space of native IDPs and designed artificial IDPs (A-IDPs) with different molecular weights and aromatic content, which exhibit variable condensate saturation concentrations and temperature cloud points in vitro and in cells. We created A-IDP puncta using these simple principles, which are capable of sequestering an enzyme and whose catalytic efficiency can be manipulated by the molecular weight of the A-IDP. These results provide a robust engineered platform for creating puncta with new, phase-separation-mediated control of biological function in living cells.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Linhagem Celular , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Peso Molecular , Mutagênese , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Temperatura de Transição
5.
Proc Natl Acad Sci U S A ; 116(32): 15784-15791, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337677

RESUMO

Aqueous two-phase system (ATPS) formation is the macroscopic completion of liquid-liquid phase separation (LLPS), a process by which aqueous solutions demix into 2 distinct phases. We report the temperature-dependent kinetics of ATPS formation for solutions containing a monoclonal antibody and polyethylene glycol. Measurements are made by capturing dark-field images of protein-rich droplet suspensions as a function of time along a linear temperature gradient. The rate constants for ATPS formation fall into 3 kinetically distinct categories that are directly visualized along the temperature gradient. In the metastable region, just below the phase separation temperature, Tph , ATPS formation is slow and has a large negative apparent activation energy. By contrast, ATPS formation proceeds more rapidly in the spinodal region, below the metastable temperature, Tmeta , and a small positive apparent activation energy is observed. These region-specific apparent activation energies suggest that ATPS formation involves 2 steps with opposite temperature dependencies. Droplet growth is the first step, which accelerates with decreasing temperature as the solution becomes increasingly supersaturated. The second step, however, involves droplet coalescence and is proportional to temperature. It becomes the rate-limiting step in the spinodal region. At even colder temperatures, below a gelation temperature, Tgel , the proteins assemble into a kinetically trapped gel state that arrests ATPS formation. The kinetics of ATPS formation near Tgel is associated with a remarkably fragile solid-like gel structure, which can form below either the metastable or the spinodal region of the phase diagram.


Assuntos
Anticorpos Monoclonais/análise , Água/química , Coloides/química , Cinética , Espalhamento de Radiação , Soluções , Temperatura , Fatores de Tempo , Imagem com Lapso de Tempo
6.
J Am Chem Soc ; 141(17): 6930-6936, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010283

RESUMO

The anomalously high mobility of hydroxide and hydronium ions in aqueous solutions is related to proton transfer and structural diffusion. The role of counterions in these solutions, however, is often considered to be negligible. Herein, we explore the impact of alkali metal counter cations on hydroxide solvation and mobility. Impedance measurements demonstrate that hydroxide mobility is attenuated by lithium relative to sodium and potassium. These results are explained by ab initio molecular dynamics simulations and experimental vibrational hydration shell spectroscopy, which reveal substantially stronger ion pairing between OH- and Li+ than with other cations. Hydration shell spectra and theoretical vibrational frequency calculations together imply that lithium and sodium cations have different effects on the delocalization of water protons donating a hydrogen bond to hydroxide. Specifically, lithium leads to enhanced proton delocalization compared with sodium. However, proton delocalization and the overall diffusion process are not necessarily correlated.

7.
J Am Chem Soc ; 141(16): 6609-6616, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30919630

RESUMO

When a mixture of two salts in an aqueous solution contains a weakly and a strongly hydrated anion, their combined effect is nonadditive. Herein, we report such nonadditive effects on the lower critical solution temperature (LCST) of poly( N-isopropylacrylamide) (PNiPAM) for a fixed concentration of Na2SO4 and an increasing concentration of NaI. Using molecular dynamics simulations and vibrational sum frequency spectroscopy, we demonstrate that at low concentrations of the weakly hydrated anion (I-), the cations (Na+) preferentially partition to the counterion cloud around the strongly hydrated anion (SO42-), leaving I- more hydrated. However, upon further increase in the NaI concentration, this weakly hydrated anion is forced out of solution to the polymer/water interface by sulfate. Thus, the LCST behavior of PNiPAM involves competing roles for ion hydration and polymer-iodide interactions. This concept can be generally applied to mixtures containing both a strongly and a weakly hydrated anion from the Hofmeister series.

8.
J Phys Chem B ; 120(49): 12596-12603, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973836

RESUMO

Specific anion effects on the thermodynamics of caffeine partitioning between aqueous and cyclohexane phases were studied in the presence of 11 sodium salts by utilizing UV-vis spectroscopy. It is observed that weakly hydrated anions such as ClO4-, SCN-, and I- salt caffeine into the aqueous phase and increase the standard Gibbs free energy for caffeine transfer. On the other hand, well-hydrated anions such as CO32- and SO42- salt caffeine molecules out of the aqueous solution and promote the transfer process. Results suggest that weakly hydrated anions associate with the hydrophobic patches of caffeine including three methyl groups and a flat heteroatomic ring to solvate caffeine molecules. Well-hydrated anions are excluded from the caffeine surface to salt caffeine molecules out of aqueous solution. Moreover, the enthalpy and entropy of caffeine transfer were obtained by measuring the standard Gibbs free energy for caffeine transfer at varied temperatures. The transfer of caffeine from the aqueous to cyclohexane phase was an endothermic process driven by the entropy of caffeine transfer. However, the trend in standard Gibbs free energy across the Hofmeister series was determined by the enthalpy of caffeine transfer. These results provide an enthalpic origin to explain the Hofmeister trends in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...