Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 6(1): 197, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30396371

RESUMO

The Mid-Atlantic Microbiome Meet-up (M3) organization brings together academic, government, and industry groups to share ideas and develop best practices for microbiome research. In January of 2018, M3 held its fourth meeting, which focused on recent advances in biodefense, specifically those relating to infectious disease, and the use of metagenomic methods for pathogen detection. Presentations highlighted the utility of next-generation sequencing technologies for identifying and tracking microbial community members across space and time. However, they also stressed the current limitations of genomic approaches for biodefense, including insufficient sensitivity to detect low-abundance pathogens and the inability to quantify viable organisms. Participants discussed ways in which the community can improve software usability and shared new computational tools for metagenomic processing, assembly, annotation, and visualization. Looking to the future, they identified the need for better bioinformatics toolkits for longitudinal analyses, improved sample processing approaches for characterizing viruses and fungi, and more consistent maintenance of database resources. Finally, they addressed the necessity of improving data standards to incentivize data sharing. Here, we summarize the presentations and discussions from the meeting, identifying the areas where microbiome analyses have improved our ability to detect and manage biological threats and infectious disease, as well as gaps of knowledge in the field that require future funding and focus.


Assuntos
Armas Biológicas , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Humanos , Microbiota/fisiologia , Análise de Sequência de DNA/métodos
2.
PLoS Comput Biol ; 14(9): e1006454, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180163

RESUMO

Genomic data are becoming increasingly valuable as we develop methods to utilize the information at scale and gain a greater understanding of how genetic information relates to biological function. Advances in synthetic biology and the decreased cost of sequencing are increasing the amount of privately held genomic data. As the quantity and value of private genomic data grows, so does the incentive to acquire and protect such data, which creates a need to store and process these data securely. We present an algorithm for the Secure Interrogation of Genomic DataBases (SIG-DB). The SIG-DB algorithm enables databases of genomic sequences to be searched with an encrypted query sequence without revealing the query sequence to the Database Owner or any of the database sequences to the Querier. SIG-DB is the first application of its kind to take advantage of locality-sensitive hashing and homomorphic encryption to allow generalized sequence-to-sequence comparisons of genomic data.


Assuntos
Computação em Nuvem , Segurança Computacional , Bases de Dados Factuais , Genômica , Biologia Sintética , Algoritmos , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli O157/genética , Humanos , Motivação , Mutação , Análise de Sequência de DNA , Staphylococcus aureus/genética
3.
Investig Genet ; 3(1): 10, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22594601

RESUMO

BACKGROUND: The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. METHOD: This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. RESULT: Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. CONCLUSION: The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. KEYWORDS: single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...