Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(6): e2627, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397482

RESUMO

Fire has transformative effects on soil biological, chemical, and physical properties in terrestrial ecosystems around the world. While methods for estimating fire characteristics and associated effects aboveground have progressed in recent decades, there remain major challenges in characterizing soil heating and associated effects belowground. Overcoming these challenges is crucial for understanding how fire influences soil carbon storage, biogeochemical cycling, and ecosystem recovery. In this paper, we present a novel framework for characterizing belowground heating and effects. The framework includes (1) an open-source model to estimate fire-driven soil heating, cooling, and the biotic effects of heating across depths and over time (Soil Heating in Fire model; SheFire) and (2) a simple field method for recording soil temperatures at multiple depths using self-contained temperature sensor and data loggers (i.e., iButtons), installed along a wooden stake inserted into the soil (i.e., an iStake). The iStake overcomes many logistical challenges associated with obtaining temperature profiles using thermocouples. Heating measurements provide inputs to the SheFire model, and modeled soil heating can then be used to derive ecosystem response functions, such as heating effects on microorganisms and tissues. To validate SheFire estimates, we conducted a burn table experiment using iStakes to record temperatures that were in turn used to fit the SheFire model. We then compared SheFire predicted temperatures against measured temperatures at other soil depths. To benchmark iStake measurements against those recorded by thermocouples, we co-located both types of sensors in the burn table experiment. We found that SheFire demonstrated skill in interpolating and extrapolating soil temperatures, with the largest errors occurring at the shallowest depths. We also found that iButton sensors are comparable to thermocouples for recording soil temperatures during fires. Finally, we present a case study using iStakes and SheFire to estimate in situ soil heating during a prescribed fire and demonstrate how observed heating regimes would influence seed and tree root vascular cambium survival at different soil depths. This measurement-modeling framework provides a cutting-edge approach for describing soil temperature regimes (i.e., soil heating) through a soil profile and predicting biological responses.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Calefação , Humanos , Solo/química
2.
J Environ Manage ; 303: 114141, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838383

RESUMO

Rangelands worldwide have experienced significant shifts from grass-dominated to woody-plant dominated states over the past century. In North America, these shifts are largely driven by overgrazing and landscape-scale fire suppression. Such shifts reduce productivity for livestock, can have broad-scale impacts to biodiversity, and are often difficult to reverse. Restoring grass dominance often involves restoring fire as an ecological process. However, many resprouting woody plants persist following disturbance, including fire, by resprouting from protected buds, rendering fire ineffective for reducing resprouting woody plant density. Recent research has shown that extreme fire (high-energy fires during periods of water stress) may reduce resprouting capacity. This previous research did not examine whether high-energy fires alone would be sufficient to cause mortality. We created an experimental framework for assessing the "buds-protection-resources" hypothesis of resprouting persistence under different fire energies. In July-August 2018 we exposed 48 individuals of a dominant resprouting woody plant in the region, honey mesquite (Prosopis glandulosa), to two levels of fire energy (high and low) and root crown exposure (exposed vs unexposed) and evaluated resprouting capacity. We censused basal and epicormic resprouts for two years following treatment. Water stress was moderate for several months leading up to fires but low in subsequent years. Epicormic and basal buds were somewhat protected from low- and high-energy fire. However, epicormic buds were protected in very few mesquites subjected to high-energy fires. High-energy fires decreased survival, caused loss of apical dominance, and left residual dead stems, which may increase chances of mortality from future fires. Basal resprout numbers were reduced by high-energy fires, which may have additional implications for long-term mesquite survival. While the buds, protection, and resources components of resprouter persistence all played a role in resprouting, high-energy fire decreased mesquite survival and reduced resprouting. This suggests that high-energy fires affect persistence mechanisms to different extents than low-energy fires. In addition, high-energy fires during normal rainfall can have negative impacts on resprouting capacity; water stress is not a necessary precursor to honey mesquite mortality from high-energy fire.


Assuntos
Incêndios , Prosopis , Ecossistema , Plantas , Madeira
3.
Ecol Evol ; 11(11): 6620-6633, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141245

RESUMO

Increasingly, land managers have attempted to use extreme prescribed fire as a method to address woody plant encroachment in savanna ecosystems. The effect that these fires have on herbaceous vegetation is poorly understood. We experimentally examined immediate (<24 hr) bud response of two dominant graminoids, a C3 caespitose grass, Nassella leucotricha, and a C4 stoloniferous grass, Hilaria belangeri, following fires of varying energy (J/m2) in a semiarid savanna in the Edwards Plateau ecoregion of Texas. Treatments included high- and low-energy fires determined by contrasting fuel loading and a no burn (control) treatment. Belowground axillary buds were counted and their activities classified to determine immediate effects of fire energy on bud activity, dormancy, and mortality. High-energy burns resulted in immediate mortality of N. leucotricha and H. belangeri buds (p < .05). Active buds decreased following high-energy and low-energy burns for both species (p < .05). In contrast, bud activity, dormancy, and mortality remained constant in the control. In the high-energy treatment, 100% (n = 24) of N. leucotricha individuals resprouted while only 25% (n = 24) of H. belangeri individuals resprouted (p < .0001) 3 weeks following treatment application. Bud depths differed between species and may account for this divergence, with average bud depths for N. leucotricha 1.3 cm deeper than H. belangeri (p < .0001). Synthesis and applications: Our results suggest that fire energy directly affects bud activity and mortality through soil heating for these two species. It is imperative to understand how fire energy impacts the bud banks of grasses to better predict grass response to increased use of extreme prescribed fire in land management.

4.
J Environ Manage ; 240: 368-373, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953990

RESUMO

Mechanisms underlying the loss of ecological resilience and a shift to an alternate regime with lower ecosystem service provisioning continues to be a leading debate in ecology, particularly in cases where evidence points to human actions and decision-making as the primary drivers of resilience loss and regime change. In this paper, we introduce the concept of coerced resilience as a way to explore the interplay among social power, ecological resilience, and fire management, and to better understand the unintended and undesired regime changes that often surprise ecosystem managers and governing officials. Philosophically, coercion is the opposite of freedom, and uses influence or force to gain compliance among local actors. The coercive force imposed by societal laws and policies can either enhance or reduce the potential to manage for essential structures and functions of ecological systems and, therefore, can greatly alter resilience. Using a classical fire-dependent regime shift from North America (tallgrass prairie to juniper woodland), and given that coercion is widespread in fire management today, we quantify relative differences in resilience that emerge in a policy-coerced fire system compared to a theoretical, policy-free fire system. Social coercion caused large departures in the fire conditions associated with alternative grassland and juniper woodland states, and the potential for a grassland state to emerge to dominance became increasingly untenable with fire as juniper cover increased. In contrast, both a treeless, grassland regime and a co-dominated grass-tree regime emerged across a wide range of fire conditions in the absence of policy controls. The severe coercive forcing present in fire management in the Great Plains, and corresponding erosion of grassland resilience, points to the need for transformative environmental governance and the rethinking of social power structures in modern fire policies.


Assuntos
Ecossistema , Incêndios , Ecologia , Florestas , Humanos , América do Norte
5.
Neurosci Lett ; 704: 57-61, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-30951799

RESUMO

Although olfactory dysfunction is an early warning sign of Alzheimer's and Parkinson's diseases, and is commonly present in a range of other neurodegenerative disorders, the mechanisms for its pathogenesis are not yet clear. Since fMRI allows the mapping of spatial and temporal patterns of activity in multiple brain regions simultaneously, it serves as a powerful tool to study olfactory dysfunction in animal models of neurodegenerative diseases. Nonetheless, there have been no reports to date of mapping odor-induced activation patterns beyond the olfactory bulb to the extended networks of olfactory and limbic archicortex, likely due to the small size of the mouse brain. Therefore, using an 11.7 T magnet and a blood volume-weighted fMRI technique, we mapped the functional neuroanatomy of the mouse olfactory system. Consistent with reports on imaging of the much larger human brain, we mapped activity in regions of the olfactory bulb, as well as olfactory and limbic archicortex. By using two distinct odorants, we further demonstrated odorant-specific activation patterns. Our work thus provides a methodological framework for fMRI studies of olfactory dysfunction in mouse models of neurodegeneration.


Assuntos
Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Animais , Mapeamento Encefálico , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Odorantes
6.
Bot Stud ; 59(1): 20, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30083978

RESUMO

BACKGROUND: Invasions by non-native plants contribute to loss of ecosystem biodiversity and productivity, modification of biogeochemical cycles, and inhibition of natural regeneration of native species. Japanese stiltgrass (Microstegium vimineum (Trin.) A. Campus) is one of the most prevalent invasive grasses in the forestlands of Tennessee, United States. We measured the extent of invasion, identified potential factors affecting invasion, and quantified the relative importance of each factor. We analyzed field data collected by the Forest Inventory and Analysis Program of the U.S. Forest Service to measure the extent of invasion from 2005 to 2011 and identified potential factors affecting invasion during this period using boosted regression trees. RESULTS: Our results indicated that presence of Japanese stiltgrass on sampled plots increased 50% (from 269 to 404 plots) during the time period. The probability of invasion was correlated with one landscape condition (elevation) (20.5%) and five forest features (including tree species diversity, basal area, stand age, site productivity, and natural regeneration) (79.5%). Boosted regression trees identified the most influential (highly correlated) variables as tree species diversity (30.7%), basal area (22.9%), elevation (20.5%), and stand age (16.7%). Our results suggest that Japanese stiltgrass is likely to continue its invasion in Tennessee forests. CONCLUSIONS: The present model, in addition to correlating the probability of Japanese stiltgrass invasions with current climatic conditions and landscape attributes, could aid in the on-going development of control strategies for confronting Japanese stiltgrass invasions by identifying vulnerable areas that might emerge as a result of likely changes in climatic conditions and land use patterns.

7.
Ecol Appl ; 26(1): 128-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039515

RESUMO

In ecosystems with alternative stable states, restoration success can be thought of as overcoming the resilience of an undesirable state to promote an alternative state that yields greater ecosystem services. Since greater resilience of undesirable states translates into reduced restoration potential, quantifying differences in resilience can enhance restoration planning. In the context of shrub-encroached rangeland restoration, shrubland resilience is the capacity of a woody vegetated state to absorb management interventions designed to produce a more desirable grass-dominated state, and remain within its current regime. Therefore, differences in the resilience of a state can be quantified in a relative sense by measuring whether a state switches to an alternate state following perturbation or remains in its current stability domain. Here we designed an experimental manipulation to assess the contribution of soils to differences in the relative resilience of a shrub-invaded state. In this large-scale experiment, we repeated perturbations across a gradient of soil textures to inform restoration practitioners of differences in the relative resilience of shrubland occurring on different soil types to common rangeland restoration practices. On each soil type, we compared the relative ability of the shrubland state to withstand chemical and mechanical brush control treatments, commonly employed in this study region, to untreated controls. While the shrubland community composition did not differ prior to the study, its capacity to absorb and recover from brush removal treatments depended on soil type. Shrubland resilience to chemical and mechanical brush removal was highest on coarse soils. On these soils, brush removal temporarily restored grassland dominance, but woody plants quickly regained pretreatment levels of dominance. However, shrublands on fine soils did not recover following treatments, continuing to be grass-dominated for the duration of the study. This study highlights a simple approach for prioritizing restoration actions by mapping the locations of different soil attributes that support shrub-dominated states with differing levels of resilience to brush control. This experimental approach provides a basis for operationalizing resilience in restoration and prioritizing management actions across a range of environmental conditions, which is critical given the economic constraints associated with broad-scale mechanical and chemical interventions for rangeland restoration.


Assuntos
Ecossistema , Plantas/classificação , Solo/classificação , Incêndios , Herbicidas , Desenvolvimento Vegetal , Fatores de Tempo
8.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-26903488

RESUMO

Non-native plant invasions and changing management activities have dramatically altered the structure and composition of forests worldwide. Invasive shrubs and fire suppression have led to increased densification and biomass accumulation in forest ecosystems of the southeastern USA. Notably, Chinese and European privets are rapid growing, shade-tolerant shrubs which number among the most aggressive invasive species in these forests. Privet encroachment has caused losses of native diversity, alteration of ecosystem processes and changes in community structure. The latter has become manifest through decreases in fine herbaceous fuels concurrent with increases in coarse woody fuels in forest understoreys. These alterations in fuel structure will potentially lead to less frequent, but more severe forest fires, which threaten important forest resources during extreme weather conditions. Drawing on extensive data sets compiled by the US Forest Service, we integrated statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework to predict potential range expansion of Chinese and European privet (Ligustrum sinenseandL. vulgare) and the associated increase in crown fire risk over the next two decades in forestlands of Mississippi and Alabama. Our results indicate that probability of invasion is positively associated with elevation, adjacency (within 300 m) to water bodies, mean daily maximum temperature, site productivity and private land ownership, and is negatively associated with slope, stand age, artificial regeneration, distance to the nearest road and fire disturbance. Our projections suggest the total area invaded will increase from 1.36 to ≈31.39% of all forestlands in Mississippi and Alabama (≈7 million hectares) and the annual frequency of crown fires in these forestlands will approximately double within the next two decades. Such time series projections of annual range expansions and crown fire frequency should provide land managers and restoration practitioners with an invasion chronology upon which to base proactive management plans.

9.
AoB Plants ; 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28039113

RESUMO

The success of invasive plants may reflect environmental differences in their native and introduced ranges including both abiotic and biotic conditions, such as release from aboveground herbivory. However, in response to these novel conditions, plants from invasive populations may have higher growth rates and lower defense levels compared to those in the native range. This may contribute to their success in the introduced range but perhaps not in the native range. Here, we grew 1000 Triadica sebifera plants from 14 native and introduced populations in seven common gardens with unmanaged background vegetation for three growing seasons in three geographic venues that varied in T. sebifera status and insect herbivore communities: Texas -T. sebifera is invasive, low levels of generalist herbivory; Hawaii - T. sebifera introduced but not invasive, high levels of generalist herbivory from exotic herbivores; China - native range, both generalist and specialist herbivores. We suppressed aboveground insects with insecticide on half the plants. Aboveground damage in the first growing season was lowest in Texas and insecticide sprays reduced damage in China. At the end of the first growing season, plants were tallest on average in China and shortest in Hawaii. However, height in later years and mass were highest on average in Texas and lowest in Hawaii. However, there was large variation in damage and plant performance among gardens within venues. Our results suggest that more rapid aboveground growth rates contribute to T. sebifera's success in both the invasive and native ranges independent of aboveground herbivory. However, strong variation among sites indicates that T. sebifera plants from invasive populations only have a strong advantage in a subset of sites in Texas.

10.
AoB Plants ; 72015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900746

RESUMO

Concerns regarding the long-term viability of threatened and endangered plant species are increasingly warranted given the potential impacts of climate change and habitat fragmentation on unstable and isolated populations. Orchidaceae is the largest and most diverse family of flowering plants, but it is currently facing unprecedented risks of extinction. Despite substantial conservation emphasis on rare orchids, populations continue to decline. Spiranthes parksii (Navasota ladies' tresses) is a federally and state-listed endangered terrestrial orchid endemic to central Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor and determine suitable habitat for future surveys and targeted conservation efforts. We analysed several geo-referenced variables describing climatic conditions and landscape features to identify potential factors influencing the likelihood of occurrence of S. parksii using boosted regression trees. Our model classified 97 % of the cells correctly with regard to species presence and absence, and indicated that probability of existence was correlated with climatic conditions and landscape features. The most influential variables were mean annual precipitation, mean elevation, mean annual minimum temperature and mean annual maximum temperature. The most likely suitable range for S. parksii was the eastern portions of Leon and Madison Counties, the southern portion of Brazos County, a portion of northern Grimes County and along the borders between Burleson and Washington Counties. Our model can assist in the development of an integrated conservation strategy through: (i) focussing future survey and research efforts on areas with a high likelihood of occurrence, (ii) aiding in selection of areas for conservation and restoration and (iii) framing future research questions including those necessary for predicting responses to climate change. Our model could also incorporate new information on S. parksii as it becomes available to improve prediction accuracy, and our methodology could be adapted to develop distribution maps for other rare species of conservation concern.

11.
Ecol Appl ; 25(8): 2382-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26910962

RESUMO

Resistance to the use of prescribed fire is strong among many private land managers despite the advantages it offers for maintaining fire-adapted ecosystems. Even managers who are aware of the benefits of using prescribed fire as a management tool avoid using it, citing potential liability as a major reason for their aversion. Recognizing the importance of prescribed fire for ecosystem management and the constraints current statutory schemes impose on its use, several states in the United States have undertaken prescribed burn statutory reform. The stated purpose of these statutory reforms, often called "right to burn" or "prescribed burning" acts, is to encourage prescribed burning for resource protection, public safety, and land management. Our research assessed the consequences of prescribed burn statutory reform by identifying legal incentives and impediments to prescribed fire application for ecosystem restoration and management, as well as fuel reduction. Specifically, we explored the relationship between prescribed burning laws and decisions made by land managers by exploiting a geographic-based natural experiment to compare landowner-prescribed fire use in contiguous counties with different regulations and legal liability standards. Controlling for potentially confounding variables, we found that private landowners in counties with gross negligence liability standards burn significantly more hectares than those in counties with simple negligence standards (F6,72 = 4.16, P = 0.046). There was no difference in hectares burned on private land between counties with additional statutorily mandated regulatory requirements and those requiring only a permit to complete a prescribed burn (F6,72 = 1.42, P = 0.24) or between counties with burn ban exemptions for certified prescribed burn managers and those with no exemptions during burn bans (F6,72 = 1.39, P = 0.24). Lawmakers attempting to develop prescribed burning statutes to promote the safe use of prescribed fire should consider the benefits of lower legal liability standards in conjunction with regulatory requirements that promote safety for those managing forests and rangelands with fire. Moreover, ecologists and land managers might be better prepared and motivated to educate stakeholder groups who influence prescribed fire policies if they are cognizant of the manner in which policy regulations and liability concerns create legal barriers that inhibit the implementation of effective ecosystem management strategies.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Incêndios , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Responsabilidade Legal , Estados Unidos
12.
PLoS One ; 9(3): e92301, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24647312

RESUMO

Litter decomposition is a fundamental ecosystem process in which breakdown and decay of plant detritus releases carbon and nutrients. Invasive exotic plants may produce litter that differs from native plant litter in quality and quantity. Such differences may impact litter decomposition and soil respiration in ways that depend on whether exotic and native plant litters decompose in mixtures. However, few field experiments have examined how exotic plants affect soil respiration via litter decomposition. Here, we conducted an in situ study of litter decomposition of an annual native grass (Eragrostis pilosa), a perennial exotic forb (Alternanthera philoxeroides), and their mixtures in an annual grassland in China to examine potential invasion effects on soil respiration. Alternanthera litter decomposed faster than Eragrostis litter when each was incubated separately. Mass loss in litter mixes was more rapid than predicted from rates in single species bags (only 35% of predicted mass remained at 8 months) showing synergistic effects. Notably, exotic plant litter decomposition rate was unchanged but native plant litter decomposition rate was accelerated in mixtures (decay constant k = 0.20 month(-1)) compared to in isolation (k = 0.10 month(-1)). On average, every litter type increased soil respiration compared to bare soil from which litter was removed. However, the increases were larger for mixed litter (1.82 times) than for Alternanthera litter (1.58 times) or Eragrostis litter (1.30 times). Carbon released as CO2 relative to litter carbon input was also higher for mixed litter (3.34) than for Alternathera litter (2.29) or Eragrostis litter (1.19). Our results indicated that exotic Alternanthera produces rapidly decomposing litter which also accelerates the decomposition of native plant litter in litter mixtures and enhances soil respiration rates. Thus, this exotic invasive plant species will likely accelerate carbon cycling and increase soil respiration even at intermediate stages of invasion in these annual grasslands.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Plantas/metabolismo , China , Espécies Introduzidas , Poaceae/metabolismo
13.
PLoS One ; 7(3): e33877, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22442731

RESUMO

Economic costs associated with the invasion of nonnative species are of global concern. We estimated expected costs of Chinese tallow (Triadica sebifera (L.) Small) invasions related to timber production in southern U.S. forestlands under different management strategies. Expected costs were confined to the value of timber production losses plus costs for search and control. We simulated management strategies including (1) no control (NC), and control beginning as soon as the percentage of invaded forest land exceeded (2) 60 (Low Control), (3) 25 (Medium Control), or (4) 0 (High Control) using a spatially-explicit, stochastic, bioeconomic model. With NC, simulated invasions spread northward and westward into Arkansas and along the Gulf of Mexico to occupy ≈1.2 million hectares within 20 years, with associated expected total costs increasing exponentially to ≈$300 million. With LC, MC, and HC, invaded areas reached ≈275, 34, and 2 thousand hectares after 20 years, respectively, with associated expected costs reaching ≈$400, $230, and $200 million. Complete eradication would not be cost-effective; the minimum expected total cost was achieved when control began as soon as the percentage of invaded land exceeded 5%. These results suggest the importance of early detection and control of Chinese tallow, and emphasize the importance of integrating spread dynamics and economics to manage invasive species.


Assuntos
Euphorbiaceae/crescimento & desenvolvimento , Agricultura Florestal/métodos , Espécies Introduzidas/economia , Árvores , Madeira/economia , Animais , Estados Unidos
14.
Am J Bot ; 98(7): 1128-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21730337

RESUMO

PREMISE OF THE STUDY: Invasive plants often display genetically determined variation in patterns of growth and resource allocation between native and introduced genotypes, as well as among genotypes within different regions of the introduced range. We examined patterns of genetic variation within and among native and introduced populations of the tetraploid Chinese tallow tree (Triadica sebifera, Euphorbiaceae) to determine whether nonselective evolutionary processes or the introduction history could contribute to previously observed phenotypic differences between native and introduced populations as well as among introduced populations. METHODS: We used six microsatellite markers to study 12 native populations in China, 51 introduced populations in the southeastern USA, and one introduced population in Australia. KEY RESULTS: Genetic diversity was greater within and among native populations than introduced populations. Within the southeastern USA, populations in Georgia and South Carolina differed substantially in their genetic composition and had greater genetic diversity than the rest of the southeastern USA. Greater genetic similarity between some populations in the native range and introduced range indicate a common provenance for Georgia and South Carolina populations that could have come from any of several western or southern Chinese populations and a different provenance for other southeastern USA populations and the Australian population, which were most similar to more northeastern Chinese populations. CONCLUSIONS: Differences among introduced populations in potentially adaptive traits (e.g., herbivore tolerance, herbivore resistance, growth rates) may result in part from the introduction history, in particular from differences present among source populations in the native range.


Assuntos
Variação Genética , Geografia , Espécies Introduzidas , Sapium/crescimento & desenvolvimento , Sapium/genética , Alelos , Teorema de Bayes , Loci Gênicos/genética , Genética Populacional , Genótipo , Repetições de Microssatélites/genética , Dinâmica Populacional , Tamanho da Amostra , Sudeste dos Estados Unidos
15.
Invest Ophthalmol Vis Sci ; 52(8): 5303-10, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21447679

RESUMO

PURPOSE: To demonstrate lamina-specific functional magnetic resonance imaging (MRI) of retinal and choroidal responses to visual stimulation of graded luminance, wavelength, and frequency. MATERIALS AND METHODS: High-resolution (60 × 60 µm) MRI was achieved using the blood-pool contrast agent, monocrystalline iron oxide nanoparticles (MION) and a high-magnetic-field (11.7 T) scanner to image functional changes in the normal rat retina associated with various visual stimulations. MION functional MRI measured stimulus-evoked blood-volume (BV) changes. Graded luminance, wavelength, and frequency were investigated. Stimulus-evoked fMRI signal changes from the retinal and choroidal vascular layers were analyzed. RESULTS: MRI revealed two distinct laminar signals that corresponded to the retinal and choroidal vascular layers bounding the retina and were separated by the avascular layer in between. The baseline outer layer BV index was 2-4 times greater than the inner layer BV, consistent with higher choroidal vascular density. During visual stimulation, BV responses to flickering light of different luminance, frequency, and wavelength in the inner layer were greater than those in the outer layer. The inner layer responses were dependent on luminance, frequency, and wavelength, whereas the outer layer responses were not, suggesting differential neurovascular coupling between the two vasculatures. CONCLUSIONS: This is the first report of simultaneous resolution of layer-specific functional responses of the retinal and choroid vascular layers to visual stimulation in the retina. This imaging approach could have applications in early detection and longitudinal monitoring of retinal diseases where retinal and choroidal hemodynamics may be differentially perturbed at various stages of the diseases.


Assuntos
Corioide/fisiologia , Imageamento por Ressonância Magnética , Estimulação Luminosa/métodos , Retina/fisiologia , Animais , Volume Sanguíneo , Corioide/irrigação sanguínea , Meios de Contraste/administração & dosagem , Relação Dose-Resposta a Droga , Óxido Ferroso-Férrico/administração & dosagem , Masculino , Nanopartículas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Vasos Retinianos/fisiologia
16.
Proc Biol Sci ; 274(1625): 2621-7, 2007 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17711837

RESUMO

Soil organisms influence plant species coexistence and invasion potential. Plant-soil feedbacks occur when plants change soil community composition such that interactions with that soil community in turn may positively or negatively affect the performance of conspecifics. Theories predict and studies show that invasions may be promoted by stronger negative soil feedbacks for native compared with exotic species. We present a counter-example of a successful invader with strong negative soil feedbacks apparently caused by host-specific, pathogenic soil fungi. Using a feedback experiment in pots, we investigated whether the relative strength of plant-soil feedbacks experienced by a non-native woody invader, Sapium sebiferum, differed from several native tree species by examining their performance in soils collected near conspecifics ('home soils') or heterospecifics ('away soils') in the introduced range. Sapium seedlings, but no native seedlings, had lower survival and biomass in its home soils compared with soils of other species (negative feedback'). To investigate biotic agents potentially responsible for the observed negative feedbacks, we conducted two additional experiments designed to eliminate different soil taxa ('rescue experiments'). We found that soil sterilization (pot experiment ) or soil fungicide applications (pot and field experiments) restored Sapium performance in home soil thereby eliminating the negative feedbacks we observed in the original experiment. Such negative feedbacks apparently mediated by soil fungi could have important effects on persistence of this invader by limiting Sapium seedling success in Sapium dominated forests (home soils) though their weak effects in heterospecific (away) soils suggest a weak role in limiting initial establishment.


Assuntos
Euphorbiaceae/microbiologia , Euphorbiaceae/fisiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Conservação dos Recursos Naturais , Plântula , Árvores
17.
IEEE Trans Neural Syst Rehabil Eng ; 14(3): 304-10, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17009490

RESUMO

Selective laser sintering (SLS) is a powerful manufacturing technology that does not require part-specific tooling or significant human intervention and provides the ability to easily generate parts with complex geometric designs. The present work focuses on developing a manufacturing framework using this technology to produce subject-specific transtibial amputee prosthetic sockets made of Duraform PA, which is a nylon-based material. The framework includes establishing an overall socket design (using the patellar-tendon bearing approach), performing a structural analysis using the finite element method (FEM) to ensure structural reliability during patient use, and validating the results by comparing the model output with experimental data. The validation included quantifying the failure conditions for the socket through a series of bending moment and compression tests. In the case study performed, the FEM results were within 3% of the experimental failure loads for the socket and were considered satisfactory.


Assuntos
Cotos de Amputação/patologia , Cotos de Amputação/fisiopatologia , Amputados/reabilitação , Prótese do Joelho , Ajuste de Prótese/métodos , Tíbia/patologia , Tíbia/fisiopatologia , Simulação por Computador , Desenho Assistido por Computador , Análise de Falha de Equipamento , Humanos , Modelos Biológicos , Desenho de Prótese/métodos , Estresse Mecânico , Suporte de Carga
18.
Arch Phys Med Rehabil ; 87(10): 1334-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17023242

RESUMO

OBJECTIVE: To assess the influence of energy storage and return (ESAR) prosthetic feet and multi-axis ankles on ground reaction forces and loading asymmetry between lower limbs in transtibial amputees. DESIGN: Subjects wore 2 different prosthetic feet with and without a multi-axis ankle and were analyzed using a blind repeated-measures multivariate analysis-of-variance design. SETTING: Gait analysis laboratory. PARTICIPANTS: Fifteen healthy unilateral transtibial amputees (>55 y) who had an amputation at least 1 year before testing because of vascular disorders. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The anteroposterior ground reaction force impulse, peak ground reaction forces, and braking and propulsion impulse duration were analyzed as subjects walked at a self-selected speed while wearing each of the 4 foot-ankle prosthesis combinations. Statistical analyses were used to determine if there was a significant foot, ankle, or foot-ankle interaction effect on the outcome measures for each foot (P<.05). RESULTS: Amputees generated a significantly greater propulsive impulse with the residual leg when wearing a multi-axis ankle with the ESAR and non-ESAR foot, which improved the propulsive symmetry between the residual and intact legs. There was no prosthetic foot effect on these measures. There were no significant differences in the peak residual-leg braking or propulsive ground reaction forces or the impulse durations due to the prosthetic foot, ankle, or foot-ankle interactions, although an increase in the propulsive impulse duration approached significance (P=.062) with a multi-axis ankle. CONCLUSIONS: These results suggest that amputee gait may improve with the prescription of multi-axis ankles that allow for greater propulsive impulses by the residual leg, which improve the loading symmetry between legs.


Assuntos
Amputados/reabilitação , Membros Artificiais , Marcha , Amputação Cirúrgica , Articulação do Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Feminino , Pé/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Desenho de Prótese , Tíbia/cirurgia , Caminhada
19.
Proc Biol Sci ; 273(1602): 2763-9, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17015321

RESUMO

Introduced plant success often is attributed to release from natural enemies in their new ranges. However, herbivores may accumulate over time and reduce invasiveness but evidence for this process to date is weak. We report here that enemy release is indeed limited to the early stages of introduction of the Chinese tallow tree (Sapium sebiferum). In bioassays and gardens along a geographical gradient of time since tallow tree introduction, herbivory was highest and tree performance was poorest where tallow tree has been present longer (i.e. introduced earlier). Additionally, Asian ecotypes (grown from seeds collected in Asia) had lower survival than North American ecotypes (seeds collected in North America), which is consistent with genetic responses to low herbivory in the introduced range (EICA Hypothesis). Release from insect herbivores appears to contribute to early success of the tallow tree, but accumulation of insect herbivores has apparently reduced this benefit over time.


Assuntos
Adaptação Fisiológica/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Insetos/fisiologia , Sapium/parasitologia , Animais , Evolução Biológica , Florida , Georgia , Louisiana , Plântula , Texas
20.
Oecologia ; 150(2): 272-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16917777

RESUMO

The EICA hypothesis predicts that shifts in allocation of invasive plants give rise to higher growth rates and lower herbivore defense levels in their introduced range than conspecifics in their native range. These changes in traits of invasive plants may also affect ecosystem processes. We conducted an outdoor pot experiment with Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) seedlings from its native (Jiangsu, China, native ecotype) and introduced ranges (Texas, USA, invasive ecotype) to compare their relative performances in its native range and to examine ecotype effects on soil processes with and without fertilization. Consistent with predictions, plant (shoot and root) mass was significantly greater and leaf defoliation tended to be higher, while the root:shoot ratio was lower for the invasive ecotype relative to the native ecotype. Seasonal amounts of soil-plant system CO(2) and N(2)O emissions were higher for the invasive ecotype than for the native ecotype. Soil respiration rates and N(2)O emission increases from fertilization were also greater for the invasive ecotype than for the native ecotype, while shoot-specific respiration rates (g CO(2)-C g(-1) C day(-1)) did not differ between ecotypes. Further, soil inorganic N (ammonium and nitrate) was higher, but soil total N was lower for soils with the invasive ecotype than soils with the native ecotype. Compared with native ecotypes, therefore, invasive ecotypes may have developed a competition advantage in accelerating soil processes and promoting more nitrogen uptake through soil-plant direct interaction. The results of this study suggest that soil and ecosystem processes accelerated by variation in traits of invasive plants may have implications for their invasiveness.


Assuntos
Ecossistema , Sapium/metabolismo , Solo , Dióxido de Carbono/metabolismo , Fertilizantes , Nitrogênio/farmacologia , Óxido Nitroso/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sapium/efeitos dos fármacos , Sapium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...