Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(51): 21101-21114, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38091715

RESUMO

In search of new multifunctional hybrid materials and in order to investigate the influence of chemical modification on the possible synergy between properties, the carboxylate and sulfonate derivatives of photo- and thermochromic N-salicylidene aniline were successfully inserted into Co(II)- and Zn(II)-based layered simple hydroxides, resulting in four novel hybrids: Co-N-Sali-COO, Co-N-Sali-SO3, Zn-N-Sali-COO, and Zn-N-Sali-SO3. All synthesized hybrids adopt a double organic layered configuration, which prevents the cis-trans photoisomerization ability of N-Sali-R molecules in the hybrids. However, the Zn hybrids exhibit fluorescence upon exposure to UV light due to the excited-state intramolecular proton transfer (ESIPT) mechanism. The thermally stimulated keto-enol tautomerization of N-salicylidene aniline in the hybrids was related with the changes in interlamellar spacings observed by temperature-dependent PXRD. This tautomerization process was prominently evident in the Co-N-Sali-SO3 hybrid (about 11% increase in d-spacing upon decreasing the temperature to -180 °C). Finally, the Co-N-Sali-R hybrids exhibit the typical magnetic behavior associated with Co(II)-based LSHs (ferrimagnetic ordering at TN = 6.8 and 7.7 K for Co-N-Sali-COO and Co-N-Sali-SO3, respectively). This work offers insights into isomerization in LSHs and the ESIPT mechanism's potential in new luminescent materials and prospects for designing new multifunctional materials.

2.
Dalton Trans ; 52(48): 18362-18379, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008949

RESUMO

Four new metallophosphonates with the chemical formulae M(H2O)PO3-S2C12H7 (M = Cu, Zn) and M(H2O)2(PO2OH-S2C12H7)2 (M = Mn, Co) were synthesized using a hydrothermal route from the original bent rigid thianthrene-2-ylphosphonic acid (TPA). This organic precursor crystallizes in a non-centrosymmetric space group P212121 and presents a unique bent geometry due to the presence of two sulfur atoms in its rigid platform architecture. Obtained as single crystal and polycrystalline powders, the structures of the four hybrid materials were solved using X-ray diffraction on single crystals in a monoclinic P21/c space group. These compounds adopt a lamellar structure consisting of one inorganic subnetwork alternating with a 'sawtooth' double organic -S2C12H7 subnetwork. The inorganic layers of these compounds are made of (PO3C) or partially deprotonated (PO2OHC) tetrahedra connected by the apices to isolated ZnO3(H2O) tetrahedra, Cu2O6(H2O)2 copper dimers and cobalt and manganese MO4(H2O)2 octahedra, where the latter two exhibit an isotype structure. Thermogravimetric analysis was performed to confirm the amount of water molecules present in the formula, to track the dehydration process of the structures, and to evaluate their thermal stability. The magnetic properties of the copper, cobalt, and manganese-based materials were investigated from 2 K to 300 K by using a SQUID magnetometer revealing dominant antiferromagnetic interactions with Weiss temperatures of -8.0, -10, and -1 K, respectively. These magnetic behaviors were further corroborated by first-principles simulations based on Density Functional Theory (DFT). Finally, the absorption and photoluminescence properties of both the ligand and hybrid materials were investigated, revealing diverse excitation and recombination mechanisms. The organic moiety based on thianthrene significantly influenced the absorption and emission, with additional peaks attributed to transition metals. Singlet and triplet states recombination were observed, accompanied by an unidentified quenching mechanism affecting the triplet state lifetime.

4.
Dalton Trans ; 51(38): 14721-14733, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36106445

RESUMO

The tetranuclear NiII2LnIII2 complexes, [{L'2{Ni(MeOH)(µ-OAc)}2(µ3-MeO)2Ln2}, LnIII = YIII (1), GdIII (2), TbIII (3), and DyIII (4)], were prepared using a Schiff base ligand, H3L [H3L = 3-{(2-hydroxy-3-methoxybenzylidene)amino}-2-(2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where {L'}3- is the deprotonated open structure of H3L]. X-ray crystallographic analysis of 1-4 revealed that all the complexes crystallized in the orthorhombic (Pbcn) space group, and possessed an isostructural tetranuclear butterfly or defect dicubane like core. Direct current magnetic susceptibility measurements performed on 2-4 revealed that all these complexes show an intramolecular ferromagnetic exchange coupling. Well resolved zero-field out-of-phase signals in ac magnetic susceptibility measurements were observed only in the case of 3 (Ueff = 13.4 K; τ0 = 4.1(7) × 10-7 s). This was attributed to the comparatively strong NiII-TbIII magnetic exchange coupling. DFT and ab initio calculations were carried out on 1-4 to ascertain the nature of the ferromagnetic NiII-LnIII (JNi-Ln) and LnIII-LnIII (JLn-Ln) interactions. Magnetic anisotropy and magnetic relaxation mechanisms were discussed in detail for 3 and 4. Theoretical studies provide a rationale for the slow relaxation of magnetization in 3.

5.
Inorg Chem ; 61(40): 16072-16080, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36166597

RESUMO

Heterogenization of molecular catalysts on (photo)electrode surfaces is required to design devices performing processes enabling to store renewable energy in chemical bonds. Among the various strategies to immobilize molecular catalysts, direct chemical bonding to conductive surfaces presents some advantages because of the robustness of the linkage. When the catalyst is, as it is often the case, a transition metal complex, the anchoring group has to be connected to the complex through the ligands, and an important question is thus raised on the influence of this function on the redox and on the catalytic properties of the complex. Herein, we analyze the effect of conjugated and non conjugated substituents, structurally close to anchoring functions previously used to immobilize a rhenium carbonyl bipyridyl molecular catalyst for supported CO2 electroreduction. We show that carboxylic ester groups, mimicking anchoring the catalyst via carboxylate binding to the surface, have a drastic effect on the catalytic activity of the complex toward CO2 electroreduction. The reasons for such an effect are revealed via a combined spectro-electrochemical analysis showing that the reducing equivalents are mainly accumulated on the electron-withdrawing ester on the bipyridine ligand preventing the formation of the rhenium(0) center and its interaction with CO2. Alternatively, alkyl-phosphonic ester substituents, not conjugated with the bpy ligand, mimicking anchoring the catalyst via phosphonate binding to the surface, allow preserving the catalytic activity of the complex.

6.
Dalton Trans ; 51(31): 11787-11796, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861427

RESUMO

This article reports for the first time the synthesis of an LDH using only manganese as the divalent and trivalent metallic ion. Analysis of the pH, redox potential, and chemical composition during the oxidation of a manganese basic salt using persulfate indicates the oxidation of 1/3 of the initial MnII ions, in agreement with the paramagnetic structure and XPS analysis. Infrared, Raman spectra and thermogravimetric analysis results were similar to the ones obtained with Fe-LDH also known as green rust. X-Ray diffractograms and Rietveld refinement were used to determine the structure of this solid. Thermodynamic considerations predict that this solid could reduce nitrate into gaseous nitrogen without further reduction to ammonium or ammonia unlike what is observed for Fe-LDH.

7.
Chemistry ; 28(35): e202200596, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35545956

RESUMO

Mechanisms combining organic radicals and metallic intermediates hold strong potential in homogeneous catalysis. Such activation modes require careful optimization of two interconnected processes: one for the generation of radicals and one for their productive integration towards the final product. We report that a bioinspired polymetallic nickel complex can combine ligand- and metal-centered reactivities to perform fast hydrosilylation of alkenes under mild conditions through an unusual dual radical- and metal-based mechanism. This earth-abundant polymetallic complex incorporating a catechol-alloxazine motif as redox-active ligand operates at low catalyst loading (0.25 mol%) and generates silyl radicals and a nickel-hydride intermediate through a hydrogen atom transfer (HAT) step. Evidence of an isomerization sequence enabling terminal hydrosilylation of internal alkenes points towards the involvement of the nickel-hydride species in chain walking. This single catalyst promotes a hybrid pathway by combining synergistically ligand and metal participation in both inner- and outer- sphere processes.


Assuntos
Alcenos , Níquel , Catálise , Catecóis , Flavinas , Ligantes , Metais
8.
Chemphyschem ; 23(12): e202200213, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441760

RESUMO

[Gd5 (L)16 (H2 O)8 ](Tf2 N)15 was obtained from reaction of Gd2 O3 with 1-carboxymethyl-3-ethylimidazolium chloride (LHCl). The material was found to be an ionic liquid that freezes to glassy state on cooling to -30 °C. Variable-temperature magnetic studies reveal the presence of weak magnetic intramolecular interactions in the glass. Isothermal variable-field magnetization demonstrates a magnetocaloric effect (MCE), which is the first finding of such an effect in a molecular glass. This MCE is explainable by an uncoupled representation, with a magnetic entropy change of -11.36 J K-1 kg-1 at 1.8 K for a 0-7 T magnetic field change, and with a refrigerant capacity of 125.9 J kg-1 , in the 1.8-50 K interval.

9.
J Colloid Interface Sci ; 607(Pt 1): 621-632, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34520905

RESUMO

HYPOTHESIS: While controlled and efficient exfoliation of layered oxides often remains a time consuming challenge, the surface modification of inorganic nanosheets is of outmost importance for future applications. The functionalization of the bulk material prior to exfoliation should allow the application of tools developped for Van der Waals materials to directly produce functionalized oxide nanosheets. EXPERIMENTS: The Aurivillius phase Bi2SrTa2O9 is functionalized by a linear aliphatic phosphonic acid via microwave-assisted reactions. The structure of the hybrid material and the coordination of the phosphonate group is scrutinized, notably by Pair Distribution Function. This functionalized layered oxide is then exfoliated in one hour in organic solvent, using high shear force dispersion. The obtained nanosheets are characterized in suspension and as deposits to check their chemical integrity. FINDINGS: The covalent functionalization decreases the electrostatic cohesion between the inorganic layers leading to an efficient exfoliation in short time under shearing. The functionalization of the bulk material is preserved on the nanosheets upon exfoliation and plays a major role to enable liquid-phase exfoliation and in the stability of the resulting suspensions. This strategy is very promising for the straighforward preparation of functionalized nanosheets, paving the way for versatile design of new (multi)functional hybrid nanosheets for various potential applications.

10.
Nano Lett ; 21(10): 4365-4370, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33945283

RESUMO

Light-Matter strong coupling in the vacuum limit has been shown, over the past decade, to enhance material properties. Oxide nanoparticles are known to exhibit weak ferromagnetism due to vacancies in the lattice. Here we report the 700-fold enhancement of the ferromagnetism of YBa2Cu3O7-x nanoparticles under a cooperative strong coupling at room temperature. The magnetic moment reaches 0.90 µB/mol, and with such a high value, it competes with YBa2Cu3O7-x superconductivity at low temperatures. This strong ferromagnetism at room temperature suggest that strong coupling is a new tool for the development of next-generation magnetic and spintronic nanodevices.

11.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096631

RESUMO

Superparamagnetic ZnxFe3-xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field's effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter.


Assuntos
Nanopartículas Metálicas/química , Zinco/química , Ácido Cítrico/química , Óxido Ferroso-Férrico/química , Hipertermia Induzida/métodos , Campos Magnéticos , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
12.
Langmuir ; 36(29): 8461-8475, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32597188

RESUMO

Superstructures or self-assembled nanoparticles open the development of new materials with improved and/or novel properties. Here, we present nickel fluoride (NiF2) self-assemblies by successive preparatory methods. Originally, the self-assemblies were obtained by exploiting the water-in-oil microemulsion technique as a result of auto-organization of hydrated NiF2 (NiF2·4H2O) nanoparticles. The nanostructuration of NiF2·4H2O nanoparticles was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) data. The size and shape of NiF2·4H2O nanoparticles and their subsequent self-assemblies varied slightly as a function of water-to-surfactant and water-to-oil ratios. Scanning electron microscopy (SEM) and TEM characterizations revealed that the nanoparticles are organized into a succession of self-assemblies: from individual nanoparticles assembled into layers to truncated bipyramids, which further auto-organized themselves into almond-shaped superstructures. Anhydrous NiF2 was achieved by heating NiF2·4H2O self-assemblies under the dynamic flow of molecular fluorine (F2) at a moderate temperature (350 °C). Preservation of self-assemblies during the transformation from NiF2·4H2O to NiF2 is successfully achieved. The obtained materials have a specific surface area (SSA) of about 30 m2/g, more than 60% of that of bulk NiF2. The lithium-ion (Li+) storage capacities and the mechanism of the nanostructured samples were tested and compared with the bulk material by galvanostatic cycling and X-ray absorption spectroscopy (XAS). The nanostructured samples show higher capacities (∼650 mAh/g) than the theoretical (554 mAh/g) first discharge capacity due to the concomitant redox conversion mechanism of NiF2 and solid-electrolyte interphase (SEI) formation. The nanostructuration by self-assembly appears to positively influence the lithium diffusion in comparison to the bulk material. Finally, the magnetic properties of nanostructured NiF2·xH2O (x = 0 or 4) have been measured and appear to be very similar to those of the corresponding bulk materials, without any visible size reduction effect. The hydrated samples NiF2·4H2O show an antiferromagnetic ordering at TN = 3.8 K, whereas the dehydrated ones (NiF2) present a canted antiferromagnetic ordering at TN = 74 K.

13.
Chemistry ; 26(56): 12769-12784, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32343007

RESUMO

Previously reported ferromagnetic triangles (NnBu4 )2 [Cu3 (µ3 -Cl)2 (µ-4-NO2 -pz)3 Cl3 ] (1), (PPN)2 [Cu3 (µ3 -Cl)2 (µ-pz)3 Cl3 ] (2), (bmim)2 [Cu3 (µ3 -Cl)2 (µ-pz)3 Cl3 ] (3) and newly reported (PPh4 )2 [Cu3 (µ3 -Cl)2 (µ-4-Ph-pz)3 Cl3 ] (4) were studied by magnetic susceptometry, electron paramagnetic resonance (EPR) spectroscopy and ab initio calculations to assess the origins of their ferromagnetism and of the magnetic anisotropy of their ground S=3/2 state (PPN+ =bis(triphenylphosphine)iminium, bmim+ =1-butyl-3-methylbenzimidazolium, pz- =pyrazolate). Ab initio studies revealed the d z 2 character of the magnetic orbitals of the compressed trigonal bipyramidal copper(II) ions. Ferromagnetic interactions were attributed to weak orbital overlap via the pyrazolate bridges. From the wavefunctions expansions, the ratios of the magnetic couplings were determined, which were indeterminate by magnetic susceptometry. Single-crystal EPR studies of 1 were carried out to extend the spin Hamiltonian with terms which induce zero-field splitting (zfs), namely dipolar interactions, anisotropic exchange and Dzyaloshinskii-Moriya interactions (DMI). The data were treated through both a giant-spin model and through a multispin exchange-coupled model. The latter indicated that ≈62 % of the zfs is due to anisotropic and ≈38 % due to dipolar interactions. The powder EPR data of all complexes were fitted to a simplified form of the multispin model and the anisotropic and dipolar contributions to the ground state zfs were estimated.

14.
Dalton Trans ; 49(12): 3877-3891, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31859323

RESUMO

Four new metallophosphonates M(H2O)(PO3C10H6OH)·(H2O)0.5 (M = Mn, Co, Cu, Zn) were obtained as single crystal and polycrystalline powders by hydrothermal synthesis from the precursors 6-hydroxy-2-naphthylphosphonic acid and the corresponding metal salts. These analogous hybrids crystalized in the space group P121/c1 in a lamellar structure. Their layered structures consisted of inorganic [M(H2O)(PO3C)] layers stacked with organic bilayers of 6-hydroxy-2-naphthyl moieties "HO-C10H6" and free water molecules. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction and Le Bail refinement for the powder sample. The removal of water upon heating at 250 °C was studied by thermogravimetric analysis and temperature-dependent powder X-ray diffraction. Their magnetic properties were studied by SQUID magnetometry and show antiferromagnetic behavior for the Co analogue and the occurrence of a canted antiferromagnetic order at TN = 12.2 K for the Mn analogue. The Cu compound displayed an unprecedented ferromagnetic behavior. Their absorption and luminescence properties were investigated and revealed that the ligand and the compounds displayed a common behavior below a wavelength of 400 nm. Specific absorption bands were found in the compounds with Co2+ and Cu2+ at 539 nm and 849 nm, respectively. Moreover, particular luminescence bands were found for the compounds with Mn2+, Co2+ and Zn2+ at 598 nm, 551 nm and 530 and 611 nm, respectively.

15.
Dalton Trans ; 48(47): 17544-17555, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31748774

RESUMO

In the study presented herein, we explore the ability of copper complexes with coordinated pyridine-2-carboxaldehyde (pyca) or 2-acetylpyridine (acepy) ligands to promote the addition of amines (Schiff condensation) and other nucleophiles such as alcohols (hemiacetal formation). Distinct reactivity patterns are observed: unlike pyca complexes, acepy copper complexes can promote self-aldol addition. The introduction of a flexible chain via Schiff condensation with ß-alanine allows the possibility of chelate ring ring-opening processes mediated by pH. Further derivatization of the complex [CuCl(py-2-C(H)[double bond, length as m-dash]NCH2CH2COO)] is possible by replacing its chloride ligand with different pseudohalogens (N3-, NCO- and NCS-). In addition to the change in their magnetism, which correlates with their solid-state structures, more unexpected effects in their cytotoxicity and relaxitivities are observed, which determines their possibility to be used as MRI contrast agents. The replacement of a chloride by another pseudohalogen, although a simple strategy, can be used to critically change the cytotoxicity of the Schiff base copper(ii) complex and its selectivity towards specific cell lines.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Cobre/química , Cobre/toxicidade , Animais , Células CHO , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Cetonas/química , Cetonas/farmacologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-Atividade , beta-Alanina/química , beta-Alanina/farmacologia
16.
Beilstein J Nanotechnol ; 9: 2775-2787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498650

RESUMO

The synthesis and characterization of six new lanthanide networks [Ln(L)(ox)(H2O)] with Ln = Eu3+, Gd3+, Tb3+, Dy3+, Ho3+ and Yb3+ is reported. They were synthesized by solvo-ionothermal reaction of lanthanide nitrate Ln(NO3)3·xH2O with the 1,3-bis(carboxymethyl)imidazolium [HL] ligand and oxalic acid (H2ox) in a water/ethanol solution. The crystal structure of these compounds has been solved on single crystals and the magnetic and luminescent properties have been investigated relying on intrinsic properties of the lanthanide ions. The synthetic strategy has been extended to mixed lanthanide networks leading to four isostructural networks of formula [Tb1- x Eu x (L)(ox)(H2O)] with x = 0.01, 0.03, 0.05 and 0.10. These materials were assessed as luminescent ratiometric thermometers based on the emission intensities of ligand, Tb3+ and Eu3+. The best sensitivities were obtained using the ratio between the emission intensities of Eu3+ (5D0→7F2 transition) and of the ligand as the thermometric parameter. [Tb0.97Eu0.03(L)(ox)(H2O)] was found to be one of the best thermometers among lanthanide-bearing coordination polymers and metal-organic frameworks, operative in the physiological range with a maximum sensitivity of 1.38%·K-1 at 340 K.

17.
Chem Sci ; 9(35): 7104-7114, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30310631

RESUMO

Microwave-assisted functionalization of the layered Aurivillius phase Bi2SrTa2O9 by alcohols is thoroughly investigated. The grafting of linear aliphatic and bulky alcohols is studied as a function of the starting material, underlining the importance of the prefunctionalization of the layered perovskite, for instance by butylamine. In addition, the functionalization by α,ω-alkanediols is explored. α,ω-alkanediols bearing long alkyl chains (n C > 3) adopt an unprecedented pillaring arrangement, whereas 1,3-propanediol and ethyleneglycol adopt a bilayer arrangement, only one out of the two hydroxyl groups being coordinated. Finally, the reactivities of alcohols and amines towards insertion are compared: the preferential reactivity of the two functional groups appears to be strongly dependent of the reaction conditions, and especially of the water content. This study is further extended to the case of amino-alcohol insertion. In this case, the amine group is preferentially bound, but it is possible to control the grafting of the alcohol moiety, thus going from a bilayer arrangement to a pillaring one. This work is of particular importance to be able to functionalize easily and rapidly layered oxides with elaborated molecules, bearing several different potentially reactive groups.

18.
Inorg Chem ; 57(21): 13259-13269, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30353727

RESUMO

Magnetic susceptibility and X-band electron paramagnetic resonance (EPR) studies have been carried out on the highly symmetric [Cr3O(PhCOO)6(py)3](ClO4)·0.5py (1; py = pyridine), whose cation exhibits a D3 h crystallographically imposed molecular symmetry. While magnetic susceptibility data can be interpreted with an equilateral magnetic model described by the effective multispin Hamiltonian H = -2 J(S1·S2 + S2·S3 + S3·S1), EPR data require an isosceles model described by the multispin Hamiltonian H = -2 J( S1· S2 + S2· S3) - 2 J' S3· S1, where Δ J = J - J' ≠ 0. Moreover, EPR data reveal the interplay of antisymmetric exchange (or Dzyaloshinskii-Moriya) interactions, described by a 2G(S1 × S2 + S2 × S3 + S3 × S1) term, which induce significant anisotropy to the ST = 1/2 ground state of 1, as well as an important broadening of the g⊥ resonance ( g strain). Through careful analysis of these data and in conjunction with neutron scattering data, this g strain can be deconvoluted into distributions of the individual spin-Hamiltonian parameters Δ J and |G|. This method of analysis provides simultaneous estimates of the central values and distribution profiles of the spin-Hamiltonian parameters, which are shown not to be described by monodisperse values.

19.
Dalton Trans ; 46(36): 12263-12273, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28879347

RESUMO

Complexes (bmim)2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (1), (bmim)[Cu3(µ3-OH)(µ-pz)3Cl3] (2) and (bmim)2[Cu3(µ3-OH)(µ-Cl)(µ-pz)3Cl3] (3) were synthesized (bmim+ = 1-butyl-3-methylimidazolium, pz- = pyrazolato anion). Dianionic complexes 1 and 3 were obtained as crystalline solids, whereas the monoanionic complex 2 was obtained as a viscous paste. Magnetic susceptibility and X-band EPR studies revealed intramolecular ferromagnetic interactions for 1 with small magnetoanisotropy in its ground state (D3/2∼ 10-3 cm-1) and intramolecular antiferromagnetic interactions for 2 and 3 (-285 and -98 cm-1 average J, respectively) with important magnetic anisotropy in their ground states stemming from a combination of low magnetic symmetry and antisymmetric exchange interactions. Thermal studies revealed a clear melting point of 140 °C for 1, which is lower than that of its PPN+ and Bu4N+ analogues (1PPN and 1Bu4N, respectively, PPN+ = bis(triphenylphosphine)iminium). Upon cooling, 1 remains molten down to 70 °C. Mixtures of the salts 1, 1PPN and 1Bu4N, exhibited modified melting behaviours, with the mixtures exhibiting lower melting points than those of either of their pure components.

20.
Chemistry ; 22(47): 16850-16862, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723126

RESUMO

By using complementary experimental techniques and first-principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v , has been investigated. Four complexes have the general formula [Ni(bpy)X2 ]n+ (bpy=2,2'-bipyridine; X2 =bpy (1), (NCS- )2 (2), C2 O42- (3), NO3- (4)). In the fifth complex, [Ni(HIM2 -py)2 (NO3 )]+ (5; HIM2 -py=2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2 -py. Analysis of the high-field, high-frequency electronic paramagnetic resonance (HF-HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from -1 to -10 cm-1 . First-principles SO-CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3, on one hand, and 4 and 5, on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi ) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg -like orbitals and is due to the difference in the σ-donor strength of NO3- and bpy or HIM2 -py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g -like orbitals; and 2) the anisotropy of complexes 1-3 arises from the small splitting of the t2g -like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...