Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3341, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684684

RESUMO

Thriving in both epipelagic and mesopelagic layers, Rhizaria are biomineralizing protists, mixotrophs or flux-feeders, often reaching gigantic sizes. In situ imaging showed their contribution to oceanic carbon stock, but left their contribution to element cycling unquantified. Here, we compile a global dataset of 167,551 Underwater Vision Profiler 5 Rhizaria images, and apply machine learning models to predict their organic carbon and biogenic silica biomasses in the uppermost 1000 m. We estimate that Rhizaria represent up to 1.7% of mesozooplankton carbon biomass in the top 500 m. Rhizaria biomass, dominated by Phaeodaria, is more than twice as high in the mesopelagic than in the epipelagic layer. Globally, the carbon demand of mesopelagic, flux-feeding Phaeodaria reaches 0.46 Pg C y-1, representing 3.8 to 9.2% of gravitational carbon export. Furthermore, we show that Rhizaria are a unique source of biogenic silica production in the mesopelagic layer, where no other silicifiers are present. Our global census further highlights the importance of Rhizaria for ocean biogeochemistry.

2.
Limnol Oceanogr Methods ; 20(2): 115-129, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35909413

RESUMO

Autonomous and cabled platforms are revolutionizing our understanding of ocean systems by providing 4D monitoring of the water column, thus going beyond the reach of ship-based surveys and increasing the depth of remotely sensed observations. However, very few commercially available sensors for such platforms are capable of monitoring large particulate matter (100-2000 µm) and plankton despite their important roles in the biological carbon pump and as trophic links from phytoplankton to fish. Here, we provide details of a new, commercially available scientific camera-based particle counter, specifically designed to be deployed on autonomous and cabled platforms: the Underwater Vision Profiler 6 (UVP6). Indeed, the UVP6 camera-and-lighting and processing system, while small in size and requiring low power, provides data of quality comparable to that of previous much larger UVPs deployed from ships. We detail the UVP6 camera settings, its performance when acquiring data on aquatic particles and plankton, their quality control, analysis of its recordings, and streaming from in situ acquisition to users. In addition, we explain how the UVP6 has already been integrated into platforms such as BGC-Argo floats, gliders and long-term mooring systems (autonomous platforms). Finally, we use results from actual deployments to illustrate how UVP6 data can contribute to addressing longstanding questions in marine science, and also suggest new avenues that can be explored using UVP6-equipped autonomous platforms.

3.
Curr Biol ; 32(4): 842-850.e4, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35030328

RESUMO

A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.


Assuntos
Focas Verdadeiras , Animais , Regiões Antárticas , Peixes , Cadeia Alimentar , Água
4.
Commun Biol ; 4(1): 1255, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732822

RESUMO

Arctic Ocean sea ice cover is shrinking due to warming. Long-term sediment trap data shows higher export efficiency of particulate organic carbon in regions with seasonal sea ice compared to regions without sea ice. To investigate this sea-ice enhanced export, we compared how different early summer phytoplankton communities in seasonally ice-free and ice-covered regions of the Fram Strait affect carbon export and vertical dispersal of microbes. In situ collected aggregates revealed two-fold higher carbon export of diatom-rich aggregates in ice-covered regions, compared to Phaeocystis aggregates in the ice-free region. Using microbial source tracking, we found that ice-covered regions were also associated with more surface-born microbial clades exported to the deep sea. Taken together, our results showed that ice-covered regions are responsible for high export efficiency and provide strong vertical microbial connectivity. Therefore, continuous sea-ice loss may decrease the vertical export efficiency, and thus the pelagic-benthic coupling, with potential repercussions for Arctic deep-sea ecosystems.


Assuntos
Ciclo do Carbono , Camada de Gelo/química , Camada de Gelo/microbiologia , Microbiota/fisiologia , Archaea/metabolismo , Regiões Árticas , Bactérias/metabolismo , Oceanos e Mares
5.
Nat Commun ; 12(1): 2816, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990580

RESUMO

The organic carbon produced in the ocean's surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, other morphological properties are still not quantitatively monitored. With the growing number of in situ imaging technologies, there is now a great possibility to analyze the morphology of individual marine snow. Thus, automated methods for their classification are urgently needed. Consequently, here we present a simple, objective categorization method of marine snow into a few ecologically meaningful functional morphotypes using field data from successive phases of the Arctic phytoplankton bloom. The proposed approach is a promising tool for future studies aiming to integrate the diversity, composition and morphology of marine snow into our understanding of the biological carbon pump.


Assuntos
Sedimentos Geológicos/química , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Animais , Regiões Árticas , Ciclo do Carbono , Ecossistema , Eutrofização , Cadeia Alimentar , Oceanos e Mares , Tamanho da Partícula , Água do Mar/química , Análise Espaço-Temporal , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/metabolismo
6.
ISME J ; 13(2): 482-493, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30291329

RESUMO

The central Baltic Sea is characterized by a pelagic redox zone exhibiting high dark CO2 fixation rates below the chemocline. These rates are mainly driven by chemolithoautotrophic and denitrifying Sulfurimonas GD17 subgroup cells which are motile and fast-reacting r-strategists. Baltic Sea redox zones are unstable and a measurable overlap of nitrate and reduced sulfur, essential for chemosynthesis, is often only available on small scales and short times due to local mixing events. This raises the question of how GD17 cells gain access to electron donors or acceptors over longer term periods and under substrate deficiency. One possible answer is that GD17 cells store high-energy-containing polyphosphate during favorable nutrient conditions to survive periods of nutrient starvation. We used scanning electron microscopy with energy-dispersive X-ray spectroscopy to investigate potential substrate enrichments in single GD17 cells collected from Baltic Sea redox zones. More specific substrate enrichment features were identified in experiments using Sulfurimonas gotlandica GD1T, a GD17 representative. Sulfurimonas cells accumulated polyphosphate both in situ and in vitro. Combined genome and culture-dependent analyses suggest that polyphosphate serves as an energy reservoir to maintain cellular integrity at unfavorable substrate conditions. This redox-independent energy supply would be a precondition for sustaining the r-strategy lifestyle of GD17 and may represent a newly identified survival strategy for chemolithoautotrophic prokaryotes occupying eutrophic redox zones.


Assuntos
Ecossistema , Epsilonproteobacteria/metabolismo , Polifosfatos/metabolismo , Água do Mar/microbiologia , Países Bálticos , Desnitrificação , Oxirredução , Água do Mar/química
7.
Environ Microbiol ; 19(6): 2495-2506, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28464419

RESUMO

Chemolithoautotrophic sulfur-oxidizing and denitrifying Gamma- (particularly the SUP05 cluster) and Epsilonproteobacteria (predominantly Sulfurimonas subgroup GD17) are assumed to compete for substrates (electron donors and acceptors) in marine pelagic redox gradients. To elucidate their ecological niche separation we performed 34 S0 , 15 NO3- and H13 CO3- stable-isotope incubations with water samples from Baltic Sea suboxic, chemocline and sulfidic zones followed by combined phylogenetic staining and high-resolution secondary ion mass spectrometry of single cells. SUP05 cells were small-sized (0.06-0.09 µm3 ) and most abundant in low-sulfidic to suboxic zones, whereas Sulfurimonas GD17 cells were significantly larger (0.26-0.61 µm3 ) and most abundant at the chemocline and below. Together, SUP05 and GD17 cells accumulated up to 48% of the labelled substrates but calculation of cell volume-specific rates revealed that GD17 cells incorporated labelled substrates significantly faster throughout the redox zone, thereby potentially outcompeting SUP05 especially at high substrate concentrations. Thus, in synopsis with earlier described features of SUP05/GD17 we conclude that their spatially overlapping association in stratified sulfidic zones is facilitated by their different lifestyles: whereas SUP05 cells are streamlined, non-motile K-strategists adapted to low substrate concentrations, GD17 cells are motile r-strategists well adapted to fluctuating substrate and redox conditions.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Epsilonproteobacteria/crescimento & desenvolvimento , Enxofre/metabolismo , Desnitrificação , Epsilonproteobacteria/classificação , Marcação por Isótopo , Oceanos e Mares , Oxirredução , Oxigênio , Filogenia , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...