Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732793

RESUMO

During the implementation of the Internet of Things (IoT), the performance of communication and sensing antennas that are embedded in smart surfaces or smart devices can be affected by objects in their reactive near field due to detuning and antenna mismatch. Matching networks have been proposed to re-establish impedance matching when antennas become detuned due to environmental factors. In this work, the change in the reflection coefficient at the antenna, due to the presence of objects, is first characterized as a function of the frequency and object distance by applying Gaussian process regression on experimental data. Based on this characterization, for random object positions, it is shown through simulation that a dynamic environment can lower the reliability of a matching network by up to 90%, depending on the type of object, the probability distribution of the object distance, and the required bandwidth. As an alternative to complex and power-consuming real-time adaptive matching, a new, resilient network tuning strategy is proposed that takes into account these random variations. This new approach increases the reliability of the system by 10% to 40% in these dynamic environment scenarios.

2.
Sci Rep ; 13(1): 16714, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794099

RESUMO

To accommodate the ever-growing data requirements in densely populated areas and address the need for high-resolution sensing in diverse next-generation applications, there is a noticeable trend towards utilizing large unallocated frequency bands above 100 GHz. To overcome the harsh propagation conditions, large-scale antenna arrays are crucial and urge the need for cost-effective, mass-manufacturable technologies. A dedicated Any-Layer High Density Interconnect PCB technology for highly efficient wireless D-band (110-170 GHz) systems is proposed. Specifically, the adapted stack accommodates broadband air-filled substrate-integrated-waveguide components for efficient long-range signal distribution and low-loss passives. The viability of the suggested technology platform is demonstrated by designing, fabricating and measuring several essential low-loss air-filled substrate-integrated-waveguide components, such as a dual rectangular filter, with a minimal insertion loss of 0.87 dB and 10 dB-matching within the (132.8-139.2 GHz) frequency band, and an air-filled waveguide with a routing loss of only 0.08 dB/mm and a flat amplitude variation within 0.01 dB/mm over the (115-155 GHz) frequency range. A broadband transition towards stripline, with a limited loss of 1.1 dB, is described to interface these waveguides with compactly integrated chips. A tolerance analysis is included as well as a comparison to the state of the art.

3.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992034

RESUMO

For ultra-reliable high-data-rate communication, the beyond fifth generation (B5G) and the sixth generation (6G) wireless networks will heavily rely on beamforming, with mobile users often located in the radiative near-field of large antenna systems. Therefore, a novel approach to shape both the amplitude and phase of the electric near-field of any general antenna array topology is presented. Leveraging on the active element patterns generated by each antenna port, the beam synthesis capabilities of the array are exploited through Fourier analysis and spherical mode expansions. As a proof-of-concept, two different arrays are synthesized from the same active antenna element. These arrays are used to obtain 2D near-field patterns with sharp edges and a 30 dB difference between the fields' magnitudes inside and outside the target regions. Various validation and application examples demonstrate the full control of the radiation in every direction, yielding optimal performance for the users in the focal zones, while significantly improving the management of the power density outside of them. Moreover, the advocated algorithm is very efficient, allowing for a fast, real-time modification and shaping of the array's radiative near-field.

4.
Sci Rep ; 13(1): 5000, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973352

RESUMO

As key enablers for smart fabric interactive textile (SFIT) systems, textile antenna systems and platforms need to be energy-efficient, low-profile and should guarantee a stable wireless body-centric communication link. Using multiple energy harvesters on and in the antenna platform is highly recommended to enable autonomous SFIT systems. Different sensors could be added to the system for monitoring the environmental and/or biophysical parameters of rescue workers, military personnel, and other safety workers. Therefore, a wearable coupled-quarter-mode (coupled-QM) substrate-integrated waveguide (SIW) antenna with optimally, seamlessly integrated hybrid kinetic and ambient-light energy harvesters is proposed. Two QM cavities are coupled via a non-resonant slot to create a compact antenna covering the [2.4; 2.4835] GHz Industrial, Scientific and Medical (ISM) band. The antenna platform fully consists of textile materials, being protective rubber foam and copper taffeta, enabling its unobtrusive integration into protective clothing. A novel, compact way of deploying a kinetic energy harvester inside the substrate, combined with flexible power management electronics on the antenna feed plane and a flexible ambient-light photovoltaic cell on the antenna plane, is proposed. The integrated antenna platform exhibits a measured impedance bandwidth of 307 MHz, a radiation efficiency of 88.57% and maximum gain of 3.74 dBi at 2.45 GHz. Wearing the antenna platform around a person's wrist resulted in an average harvested power of 229.8 µW when walking in an illuminated room.

5.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298283

RESUMO

The Internet of Things (IoT) accelerates the need for compact, lightweight and low-cost antennas combining wideband operation with a high integration potential. Although screen printing is excellently suited for manufacturing conformal antennas on a flexible substrate, its application is typically limited due to the expensive nature of conductive inks. This paper investigates how the production cost of a flexible coplanar waveguide (CPW)-fed planar monopole antenna can be reduced by exploiting a mesh-based method for limiting ink consumption. Prototypes with mesh grids of different line widths and densities were screen-printed on a polyethylene terephthalate (PET) foil using silver-based nanoparticle ink. Smaller line widths decrease antenna gain and efficiency, while denser mesh grids better approximate unmeshed antenna behavior, albeit at the expense of greater ink consumption. A meshed prototype of 34.76×58.03mm with almost 80% ink reduction compared to an unmeshed counterpart is presented. It is capable of providing wideband coverage in the IMT/LTE-1/n1 (1.92-2.17 GHz), LTE-40/n40 (2.3-2.4 GHz), 2.45 GHz ISM (2.4-2.4835 GHz), IMT-E/LTE-7/n7 (2.5-2.69 GHz), and n78 5G (3.3-3.8 GHz) frequency bands. It exhibits a peak radiation efficiency above 90% and a metallized surface area of 2.46 cm2 (yielding an ink-to-total-surface ratio of 12.2%).

6.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890908

RESUMO

The effects of random array deformations on Direction-of-Arrival (DOA) estimation with root-Multiple Signal Classification for uniform circular arrays (UCA root-MUSIC) are characterized by a conformally mapped generalized Polynomial Chaos (gPC) algorithm. The studied random deformations of the array are elliptical and are described by different Beta distributions. To successfully capture the erratic deviations in DOA estimates that occur at larger deformations, specifically at the edges of the distributions, a novel conformal map is introduced, based on the hyperbolic tangent function. The application of this new map is compared to regular gPC and Monte Carlo sampling as a reference. A significant increase in convergence rate is observed. The numerical experiments show that the UCA root-MUSIC algorithm is robust to the considered array deformations, since the resulting errors on the DOA estimates are limited to only 2 to 3 degrees in most cases.

7.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684695

RESUMO

In the context of localization and sensing within the Internet of Things, new antenna manufacturing technologies, such as antennas printed with conductive inks on thin thermoplastic sheets, allow for seamless integration into plastic objects produced by an injection molding process. In this paper, we present printed sensor antennas for the [862-928] MHz band supporting LoRa and Sigfox and the [2.4-2.5] GHz band for WiFi, Bluetooth, and IEEE802.15.4 communication. To integrate them into smart suitcases, the antennas are printed, overmolded, tested, and measured, following a dedicated conformal integration strategy consisting of two design iterations. Additionally, as a more convenient connection to the printed antennas, printed transmission lines along with a dedicated transition to printed circuit board technologies are implemented and characterized, avoiding rigid coaxial connectors that exhibit fragile mounting on flexible substrates. The overmolded stand-alone antennas achieve fractional impedance bandwidths of 26% and 15% covering the [862-928] MHz and [2.4-2.5] GHz bands, respectively, with a substantial margin and with in-band simulated total efficiencies of 94% and 88%, respectively. Finally, the seamless integration of two antennas into a smart suitcase for tracing via Sigfox and WiFi demonstrates the potential of the proposed technique to realize high-performance antennas occupying virtually no real estate.

8.
Sensors (Basel) ; 21(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204626

RESUMO

Long-range, low-power wireless technologies such as LoRa have been shown to exhibit excellent performance when applied in body-centric wireless applications. However, the robustness of LoRa technology to Doppler spread has recently been called into question by a number of researchers. This paper evaluates the impact of static and dynamic Doppler shifts on a simulated LoRa symbol detector and two types of simulated LoRa receivers. The results are interpreted specifically for body-centric applications and confirm that, in most application environments, pure Doppler effects are unlikely to severely disrupt wireless communication, confirming previous research, which stated that the link deteriorations observed in a number of practical LoRa measurement campaigns would mainly be caused by multipath fading effects. Yet, dynamic Doppler shifts, which occur as a result of the relative acceleration between communicating nodes, are also shown to contribute to link degradation. This is especially so for higher LoRa spreading factors and larger packet sizes.


Assuntos
Tecnologia sem Fio
9.
Sensors (Basel) ; 21(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946352

RESUMO

When aiming for the wider deployment of low-power sensor networks, the use of sub-GHz frequency bands shows a lot of promise in terms of robustness and minimal power consumption. Yet, when deploying such sensor networks over larger areas, the link quality can be impacted by a host of factors. Therefore, this contribution demonstrates the performance of several links in a real-world, research-oriented sensor network deployed in a (sub)urban environment. Several link characteristics are presented and analysed, exposing frequent signal deterioration and, more rarely, signal strength enhancement along certain long-distance wireless links. A connection is made between received power levels and seasonal weather changes and events. The irregular link performance presented in this paper is found to be genuinely disruptive when pushing sensor-networks to their limits in terms of range and power use. This work aims to give an indication of the severity of these effects in order to enable the design of truly reliable sensor networks.

10.
Sensors (Basel) ; 21(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652813

RESUMO

A mechanically flexible textile antenna-backed sensor node is designed and manufactured, providing accurate personal localization functionality by application of Decawave's DW1000 Impulse Radio Ultra-Wideband (IR-UWB) Integrated Circuit (IC). All components are mounted on a flexible polyimide foil, which is integrated on the backplane of a wearable cavity-backed slot antenna designed for IR-UWB localization in Channels 2 and 3 of the IEEE 802.15.4-2011 standard (3744 MHz-4742.4 MHz). The textile antenna's radiation pattern is optimized to mitigate body effects and to minimize absorption by body tissues. Furthermore, its time-domain characteristics are measured to be adequate for localization. By combining the antenna and the bendable Printed Circuit Board (PCB), a mechanically supple sensor system is realized, for which the performance is validated by examining it as a node used in a complete localization system. This shows that six nodes around the body must be deployed to provide system coverage in all directions around the wearer. Even without using sleep mode functionalities, the measurements indicate that the system's autonomy is 13.3 h on a 5 V 200 mAh battery. Hence, this system acts as a proof of concept for the joining of localization electronics and other sensors with a full-textile antenna into a mechanically flexible sensor system.

11.
Sensors (Basel) ; 20(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403228

RESUMO

Blind spot road accidents are a frequently occurring problem. Every year, several deaths are caused by this phenomenon, even though a lot of money is invested in raising awareness and in the development of prevention systems. In this paper, a blind spot detection and warning system is proposed, relying on Received Signal Strength Indicator (RSSI) measurements and Bluetooth Low Energy (BLE) wireless communication. The received RSSI samples are threshold-filtered, after which a weighted average is computed with a sliding window filter. The technique is validated by simulations and measurements. Finally, the strength of the proposed system is demonstrated with real-life measurements.

12.
Opt Express ; 27(6): 8395-8413, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052658

RESUMO

An advanced transmit remote opto-antenna unit is proposed that accomplishes impedance matching between a photodetector and a low-profile antenna in a specified frequency bandwidth, without requiring an area-consuming matching network. This results in a highly compact design, which also avoids the losses and spurious radiation by such an electrically large matching circuit. Instead, the photodetector is almost directly connected to the antenna, which is designed as a conjugate load, such that the extracted and radiated power are optimized. The required input impedance for the antenna is obtained by adopting a half-mode air-filled substrate-integrated-waveguide topology, which also exhibits excellent radiation efficiency. The proposed unit omits electrical amplifiers and is, therefore, completely driven by the signal supplied by an optical fiber when deployed in an analog optical link, except for an externally supplied photodetector bias voltage. Such a highly cost-effective, power-efficient and reliable unit is an important step in making innovative wireless communication systems, which deploy extremely dense attocells of 15 cm × 15 cm, technically and economically feasible. As a validation, a prototype, operating in the Unlicensed National Information Infrastructure radio bands (5.15 GHz-5.85 GHz), is constructed and its radiation properties are characterized in free-space conditions. After normalizing with respect to the optical source's slope efficiency, a maximum boresight gain of 12.0 dBi and a -3 dB gain bandwidth of 1020 MHz (18.6 %) are observed.

13.
Sensors (Basel) ; 19(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141903

RESUMO

This paper reports the characterization of the 2.45-GHz-ISM-band radio wave propagation channel. Specifically, measurements were performed in an underground parking garage, with the aim of optimizing breadcrumb systems for a Rapid Intervention Team application. The effects of the high penetration loss and large reflections by the concrete reinforced building structure on the path loss and the large-scale fading were studied. Based on the analysis of the wireless channel, critical points for reliable communication between members of a Rapid Intervention Team were identified. In particular, attention was paid to dealing with large, spatially confined signal losses due to shadowing, the anticipation of corner losses and the ability of the system to operate on multiple floors.

14.
Sensors (Basel) ; 18(7)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970839

RESUMO

As sub-GHz wireless Internet of Things (IoT) sensor networks set the stage for long-range, low-data-rate communication, wireless technologies such as LoRa and SigFox receive a lot of attention. They aim to offer a reliable means of communication for an extensive amount of monitoring and management applications. Recently, several studies have been conducted on their performance, but none of these feature a high dynamic range in terms of channel measurement. In this contribution an autonomous, low-power, LoRa-compatible wireless sensor node is presented. The main uses for this node are situated in LoRa channel characterization and link performance analysis. By applying stepped attenuators controlled by a dynamic attenuation adjustment algorithm, this node provides a dynamic range that is significantly larger than what is provided by commercially available LoRa modules. The node was calibrated in order to obtain accurate measurements of the received signal power in dBm. In this paper, both the hardware design as well as some verification measurements are discussed, unveiling various LoRa-related research applications and opportunities.

15.
Sensors (Basel) ; 18(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346280

RESUMO

A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7-90.8 µW·m - 2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6.


Assuntos
Ondas de Rádio , Bélgica , Calibragem , Campos Eletromagnéticos , Humanos , Monitoramento de Radiação , Incerteza
16.
Materials (Basel) ; 11(1)2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301378

RESUMO

A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15-5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna's figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

17.
Sensors (Basel) ; 17(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820477

RESUMO

Antarctic conditions demand that wireless sensor nodes are operational all year round and that they provide a large communication range of several tens of kilometers. LoRa technology operating in sub-GHz frequency bands implements these wireless links with minimal power consumption. The employed chirp spread spectrum modulation provides a large link budget, combined with the excellent radio-wave propagation characteristics in these bands. In this paper, an experimental wireless link from a mobile vehicle which transmits sensor data to a base station is measured and analyzed in terms of signal-to-noise ratio and packet loss. These measurements confirm the usefulness of LoRa technology for wireless sensor systems in polar regions. By deploying directional antennas at the base station, a range of up to 30 km is covered in case of Line-of-Sight radio propagation in both the 434 and 868 MHz bands. Varying terrain elevation is shown to be the dominating factor influencing the propagation, sometimes causing the Line-of-Sight path to be obstructed. Tropospheric radio propagation effects were not apparent in the measurements.

18.
Bioelectromagnetics ; 38(4): 295-306, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28240792

RESUMO

In the future, wireless radiofrequency (RF) telecommunications networks will provide users with gigabit-per-second data rates. Therefore, these networks are evolving toward hybrid networks, which will include commonly used macro- and microcells in combination with local ultra-high density access networks consisting of so-called attocells. The use of attocells requires a proper compliance assessment of exposure to RF electromagnetic radiation. This paper presents, for the first time, such a compliance assessment of an attocell operating at 3.5 GHz with an input power of 1 mW, based on both root-mean-squared electric field strength (Erms ) and peak 10 g-averaged specific absorption rate (SAR10g ) values. The Erms values near the attocell were determined using finite-difference time-domain (FDTD) simulations and measurements by a tri-axial probe. They were compared to the International Commission on Non-Ionizing Radiation Protection's (ICNIRP) reference levels. All measured and simulated Erms values above the attocell were below 5.9 V/m and lower than reference levels. The SAR10g values were measured in a homogeneous phantom, which resulted in an SAR10g of 9.7 mW/kg, and used FDTD simulations, which resulted in an SAR10g of 7.2 mW/kg. FDTD simulations of realistic exposure situations were executed using a heterogeneous phantom, which yielded SAR10g values lower than 2.8 mW/kg. The studied dosimetric quantities were in compliance with ICNIRP guidelines when the attocell was fed an input power <1 mW. The deployment of attocells is thus a feasible solution for providing broadband data transmission without drastically increasing personal RF exposure. Bioelectromagnetics. 38:295-306, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Redes de Comunicação de Computadores , Exposição à Radiação/análise , Ondas de Rádio , Absorção de Radiação , Humanos , Modelos Teóricos , Imagens de Fantasmas , Tecnologia sem Fio
19.
Sensors (Basel) ; 16(7)2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27447632

RESUMO

The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna's variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.

20.
IEEE Trans Biomed Circuits Syst ; 10(3): 779-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26841411

RESUMO

With the breakthrough of the Internet of Things and the steady increase of wireless applications in the daily environment, the assessment of radio frequency electromagnetic field (RF-EMF) exposure is key in determining possible health effects of exposure to certain levels of RF-EMF. This paper presents the first experimental validation of a novel personal exposimeter system based on a distributed measurement approach to achieve higher measurement quality and lower measurement variability than the commonly used single point measurement approach of existing exposimeters. An important feature of the system is the integration of inertial sensors in order to determine activity and posture during exposure measurements. The system is designed to assess exposure to frequencies within the 389 to 464, 779 to 928 and 2400 to 2483.5 MHz bands using only two transceivers per node. In this study, the 2400 to 2483.5 MHz band is validated. Every node provides antenna diversity for the different bands in order to achieve higher sensitivity at these frequencies. Two AAA batteries power each standalone node and as such determine the node hardware size of this proof of concept (53 mm×25 mm×15 mm) , making it smaller than any other commercially available exposimeter.


Assuntos
Técnicas Biossensoriais/instrumentação , Campos Eletromagnéticos , Monitoramento Ambiental/instrumentação , Exposição Ambiental , Humanos , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...