Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 440: 129635, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027742

RESUMO

The manuscript presents an innovative and holistic approach to quantifying PAHs and BTEX emissions from the grilling process and indicates a novel driven-toxicity-based solution to recognize health effects related to BBQ emissions. The exposure scenario includes the type of grilling device, food type, and individual attitudes, but also a keen understanding of the broad health implications related to the gaseous/particulate PAHs emission, or age-related effects. The calculated incremental lifetime cancer risk (ILCR) associated with the exposure to PAH congeners and BTEX indicates an unacceptable level in the case of charcoal and briquette grilling with the highest values for professional cooks. The sum of 15 PAH concentrations in grilled foods was highest for meat grilling over charcoal briquettes - 382,020.39 ng/m3 and lowest for meat grilling on a gas grill - 1442.16 ng/m3. The emissions of BTEX from lump charcoal grilling were 130 times higher compared to the gaseous grill. In all considered scenarios lump-charcoal and charcoal briquettes grilling derive the ILCR above the 10-4, indicating negative effects of traditional grills on human health. The paper completes knowledge of wide-ranging health implications associated with BBQs, a topic that is almost completely unaddressed among the scientific community and policymakers.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carvão Vegetal/análise , Culinária , Gases , Humanos , Exposição por Inalação/análise , Carne/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco
2.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632025

RESUMO

Conventional NO2 monitoring devices are relatively cumbersome, expensive, and have a relatively high-power consumption that limits their use to fixed sites. On the other hand, they offer high-quality measurements. In contrast, the low-cost NO2 sensors offer greater flexibility, are smaller, and allow greater coverage of the area with the measuring devices. However, their disadvantage is much lower accuracy. The main goal of this study was to investigate the measurement data quality of NO2-B43F Alphasense sensors. The measurement performance analysis of Alphasense NO2-B43F sensors was conducted in two research areas in Poland. Sensors were placed near fixed, professional air quality monitoring stations, carrying out measurements based on reference methods, in the following periods: July-November, and December-May. Results of the study show that without using sophisticated correction methods, the range of measured air pollution concentrations may be greater than their actual values in ambient air-measured in the field by fixed stations. In the case of summer months (with air temperature over 30 °C), the long-term mean absolute percentage error was over 150% and the sensors, using the methods recommended by the manufacturer, in the case of high temperatures could even show negative values. After applying the mathematical correction functions proposed in this article, it was possible to significantly reduce long-term errors (to 40-70% per month, regardless of the location of the measurements) and eliminate negative measurement values. The proposed method is based on the recalculation of the raw measurement, air temperature, and air RH and does not require the use of extensive analytical tools.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...