Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 65, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695873

RESUMO

Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.


Assuntos
Aeromonas hydrophila , Flagelina , Transcriptoma , Flagelina/genética , Aeromonas hydrophila/genética , Aeromonas hydrophila/fisiologia , Filogeografia , Adaptação Fisiológica/genética , Filogenia , Biofilmes/crescimento & desenvolvimento
2.
Environ Res ; 239(Pt 2): 117273, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805184

RESUMO

The overuse of antibiotics in aquaculture drives the emergence of multi-drug-resistant bacteria, and antibiotic-resistant genes (ARGs) can be disseminated to other bacteria through vertical- and horizontal gene transfer (VGT and HGT) under selective pressure. Profiling the antibiotic resistome and understanding the global distribution of ARGs constitutes the first step in developing a control strategy. Hence, this study utilized extensive genomic data from hundreds of Aeromonas strains in aquaculture to profile resistome patterns and explores their association with isolation year, country, and species characteristics. Overall, ∼400 Aeromonas genomes were used to predict the ARGs from A. salmonicida, A. hydrophila, A. veronii, A. media, and A. sobria. ARGs such as sul1, tet(A), and tet(D), which display a similar proportion of positive strains among species, were subjected to phylodynamic and phylogeographic analyses. More than a hundred ARGs were identified, some of which exhibited either species-specific or non-species-specific patterns. A. salmonicida and A. media were found to have a higher proportion of species-specific ARGs than other strains, which might lead to more distinct patterns of ARG acquisition. Overall, ∼25% of strains have either sul1, tet(A), or tet(D) gene(s), but no significant difference was observed in the proportion of positive strains by species. Phylogeographic analysis revealed that the abundant numbers of sul1, tet(A), and/or tet(D) introduced in a few East Asian and North American countries could spread to both adjacent and faraway countries. In recent years, the proportions of these ARGs have dramatically increased, particularly in strains sourced from aquatic environments, suggesting control is required of the overuse of antibiotics in aquaculture. The findings of this research offer significant insights into the global dissemination of ARGs.


Assuntos
Aeromonas , Aeromonas/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Aquicultura , América do Norte , Genes Bacterianos
3.
Microorganisms ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894203

RESUMO

Flavobacterium psychrophilum is the causative agent of bacterial cold-water disease in salmonids and rainbow trout fry syndrome. This pathogen has attained a global presence and can spread both horizontally and vertically. However, it was not documented in Korea before September 2018. In this study, the objectives were to characterize Flavobacterium psychrophilum strain FPRT1, isolated from diseased rainbow trout genotypically and phenotypically. We also conducted various investigations to better understand its impact and assess potential control measures. We acquired fifty rainbow trout (approximately 70 g in weight) and transferred them to a laboratory aquarium. During the initial acclimation period, we observed mortality and examined affected fish for clinical signs. We isolated the bacterium from the spleen of infected rainbow trout using tryptone yeast extract salts agar supplemented with glucose, naming this FPRT1. Antibiotic susceptibility testing was carried out, and from the result, we selected enrofloxacin to administer to the trout orally to reduce mortality. To evaluate pathogenicity, we exposed the trout to FPRT1 at different water temperatures (8, 15, and 22 °C). Genomic analysis was conducted to identify the serotype and relatedness of FPRT1 to European strains. Affected fish displayed clinical signs, such as ulcerative lesions in the mandible, anemia with pale gills, exophthalmia, and increased mucus secretion. Internal symptoms included pale liver and enlarged spleen. FPRT1 was susceptible to erythromycin, enrofloxacin, florfenicol, oxytetracycline, and gentamicin, but resistant to oxolinic acid and sulfamethoxazole/trimethoprim. Oral administration of enrofloxacin resulted in a decrease in mortality from 28% to 6%. Pathogenicity tests revealed varying mortality rates due to FPRT1 at different temperatures. The highest rates were observed at 8 °C (ranging from 43% to 100%) for both intraperitoneal and intramuscular injections, and lower rates occurred at 22 °C (ranging from 0% to 30%), with intramuscular injections displaying higher susceptibility. Genomic analysis identified FPRT1 as serotype 2 and indicated its close genetic relationship with European strains based on the core genome and dispensable genome. The substantial genomic similarity between our strain and European strains suggests the possibility of bacterial spread through the importation of fertilized eggs from Europe. In conclusion, this study highlights the introduction of the previously undocumented pathogen (F. psychrophilum) into Korean rainbow trout populations. The detection of this pathogen and its pathogenicity assessment is not only important for understanding its impact on local aquaculture but also for establishing surveillance and control measures to prevent further transmission and outbreaks in the region.

4.
Front Vet Sci ; 10: 1205506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771943

RESUMO

The sustainable development of the aquaculture sector is at risk due to the significant challenges posed by many emerging infectious diseases. While disease prevention and control measures are becoming increasingly critical, there is a dearth of studies on the epidemiological aspects of disease transmission in aquatic ecosystems. This study aims to forecast the spread of a bacterial disease between fish farms in two regions, Romsdalsfjord in Norway and Gujwa in South Korea by applying a DTU-DADS-Aqua spatiotemporal hybrid simulation model. The simulation model assessed the pattern of disease transmission between fish farms under different degrees of transmission power based on the distance between farms (ScalingInf), host susceptibility (RelSusceptibility), the origin site of disease, and the capacity of culling fish. The distance between fish farms was found to have significant associations with disease transmission. In most simulation conditions, the disease transmission between different bay management areas (BMAs) was not evident in Romsdalsfjord. In the Guwja region, where there are relatively narrow distances between fish farms, the spread of infectious disease was greatly affected by ScalingInf. The impact of RelSusceptibility on disease transmission patterns is a critical factor to consider in simulation modeling. When RelSusceptibility ranges from 0.5-1, there is little impact on the likelihood of disease transmission. Conversely, lower ranges (0.2 and 0.05) of RelSusceptibility result in a significant decrease in the area affected by the spread of disease. Eradication measures could control the patterns of infectious disease transmission, but the effectiveness of the depopulation strategy can be dramatically changed depending on the geographical environment. In conclusion, through a comparative analysis of the disease transmission and management scenarios, this study demonstrates the potential use of existing simulation models in predicting the spread of infectious diseases under different epidemiological circumstances and quarantine actions.

5.
Fish Shellfish Immunol ; 141: 109063, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678478

RESUMO

In recent years, studies have highlighted the significant impact of probiotic treatment on the central nervous system (brain) and stress regulation through the microbiota-gut-brain axis, yet there have been limited knowledge on this axis in fish. Therefore, this study aimed to enhance the current understanding of the mechanisms underlying probiotic effects on neurotransmission and stress alleviation in fish through transcriptomic profiling. In this study, olive flounders (Paralichthys olivaceus) were subjected to two trial setups: a 1-month lab-scale trial and a 6-month field-scale trial, with and without the probiotic strain Lactococcus lactis WFLU12. RNA-Seq analysis was performed using liver samples collected from fish at one-month post-feeding (mpf) in both trials. Additionally, fish growth was monitored monthly, and serological parameters were measured at one mpf in the field-scale experiment. The results of the lab-scale trial showed that probiotic administration significantly upregulated genes related to neurotransmission, such as htr3a, mao, ddc, ntsr1, and gfra2. These findings highlight the impact of probiotics on modulating neurotransmission via the microbiota-gut-brain axis. In the field-scale experiment, fish growth was significantly promoted and the sera levels of AST, LDH, and cortisol were significantly higher in the control group compared to the probiotics group. Furthermore, genes involved in stress responses (e.g. hsp70, hsp90B1, hspE1, prdx1, and gss) and transcriptional regulators (e.g. fos, dusp1, and dusp2) exhibited significant upregulation in the control group compared to the probiotics group, indicating that probiotic administration can alleviate stress levels in fish. Overall, this study provides valuable insights into the mechanisms underlying the beneficial effects of probiotics in fish, specifically regarding their impact on neurotransmission and stress alleviation.


Assuntos
Linguado , Probióticos , Animais , Transcriptoma , Probióticos/farmacologia , Perfilação da Expressão Gênica/veterinária , Transmissão Sináptica
6.
Vet Res ; 54(1): 69, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644605

RESUMO

Piscine orthoreovirus (PRV) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. During salmon production cycles, HSMI has predominantly been observed after seawater transfer. More recently, better surveillance and longitudinal studies have detected occurrences of PRV-1 in freshwater broodstock farms and hatcheries. However, very little is known about the viral kinetics of PRV-1 or disease development of HSMI during these pre-smolt stages. In this study, we conducted a long-term PRV-1 challenge experiment to examine the profile of viral load, infectiousness and/or clearance in Atlantic salmon during their development from fry to parr stage. Atlantic salmon fry (mean weight: 1.1 ± 0.19 g) were infected with PRV-1 (high virulent variant) via intraperitoneal (IP) injection. The viral load reached a peak at 2-4 weeks post-challenge (wpc) in heart and muscle tissues. The virus was detected at relatively high levels in whole blood, spleen, and head kidney tissues until 65 wpc. Heart and muscle lesions typical of HSMI were clearly observed at 6 and 8 wpc but then subsided afterwards resolving inflammation. Innate and adaptive immune responses were elicited during the early/acute phase but returned to basal levels during the persistent phase of infection. Despite achieving high viremia, PRV-1 infection failed to cause any mortality during the 65-week virus challenge period. Cohabitation of PRV-1 infected fish (10 and 31 wpc) with naïve Atlantic salmon fry resulted in very low or no infection. Moreover, repeated chasing stress exposures did not affect the viral load or shedding of PRV-1 at 26 and 44 wpc. The present findings provide knowledge about PRV-1 infection in juvenile salmon and highlight the importance of continued monitoring and management to prevent and mitigate the PRV-1 infection in freshwater facilities.


Assuntos
Salmo salar , Animais , Músculo Esquelético , Água Doce , Inflamação/veterinária
7.
Fish Shellfish Immunol ; 138: 108844, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225060

RESUMO

Climate change is one of the most important threats to farmed abalone worldwide. Although abalone is more susceptible to vibriosis at higher water temperatures, the molecular mode of action underlying this has not been fully elucidated. Therefore, this study aimed to address the high susceptibility of Halitotis discus hannai to V. harveyi infection using abalone hemocytes exposed to low and high temperatures. Abalone hemocytes were divided into four groups, 20C, 20 V, 25C, and 25 V, depending on co-culture with (V)/without (C) V. harveyi (MOI = 12.8) and incubation temperature (20 °C or 25 °C). After 3 h of incubation, hemocyte viability and phagocytic activity were measured, and RNA sequencing was performed using Illumina Novaseq. The expression of several virulence-related genes in V. harveyi was analyzed using real-time PCR. The viability of hemocytes was significantly decreased in the 25 V group compared to cells in the other groups, whereas phagocytic activity at 25 °C was significantly higher than at 20 °C. Although a number of immune-associated genes were commonly upregulated in abalone hemocyte exposed to V. harveyi, regardless of temperature, pathways and genes regarding pro-inflammatory responses (interleukin-17 and tumor necrosis factor) and apoptosis were significantly overexpressed in the 25 V group compared to the 25C group. Notably, in the apoptosis pathway, genes encoding executor caspases (casp3 and casp7) and pro-apoptotic factor, bax were significantly up-regulated only in the 25 V group, while the apoptosis inhibitor, bcl2L1 was significantly up-regulated only in the 20 V group compared to the control group at the respective temperatures. The co-culture of V. harveyi with abalone hemocytes at 25 °C up-regulated several virulence-related genes involved in quorum sensing (luxS), antioxidant activity (katA, katB, and sodC), motility (flgI), and adherence/invasion (ompU) compared to those at 20 °C. Therefore, our results showed that H. discus hannai hemocytes exposed to V. harveyi at 25 °C were highly stressed by vigorously activated inflammatory responses and that the bacterial pathogen overexpressed several virulence-related genes at the high temperature tested. The transcriptomic profile of both abalone hemocytes and V. harveyi in the present study provide insight into differential host-pathogen interactions depending on the temperature conditions and the molecular backgrounds related to increased abalone vulnerability upon global warming.


Assuntos
Gastrópodes , Vibrioses , Vibrio , Animais , Temperatura , Vibrio/fisiologia , Gastrópodes/genética
8.
Microbiol Resour Announc ; 12(2): e0105822, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36656024

RESUMO

We report the complete genome sequences of three isolates of Streptococcus parauberis, representing serotypes Ia, Ib/Ic, and II, which were isolated from diseased olive flounder (Paralichthys olivaceus) in South Korea.

9.
Fish Physiol Biochem ; 49(1): 97-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574113

RESUMO

Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.


Assuntos
Salmo salar , Animais , Hidrocortisona , Rim Cefálico , Transcriptoma , Muco , Hormônio Adrenocorticotrópico
10.
J Fish Dis ; 45(9): 1373-1388, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35735095

RESUMO

Bacterial mutation and genetic diversity in aquaculture have led to increasing phenotypic variances, which can weaken or invalidate strategies for controlling diseases. However, few studies have monitored the degree of mutation in fish bacterial pathogens caused by environmental pressure within a short period. In this study, transcriptomic sequences from Edwardsiella piscicida, Vibrio harveyi and Streptococcus parauberis under stressed environments were used for investigating the emergence of variants. In detail, a sub-inhibitory concentration of formalin and phenol for E. piscicida, sea water at 30°C for V. harveyi and flounder serum for S. parauberis were used as stressed environments, and significant single-nucleotide polymorphisms (SNPs) and/or mutation sites were investigated after culture in the ordinary liquid media (control) and the stressed environment through a genome-wide association study. As results, several SNPs or mutations during incubation were observed under different environments in E. piscicida and/or V. harveyi in the genes relevant to flagella, fimbria type 3 secretion systems, and outer and inner membranes that have been directly exposed to external environments. In particular, given that flagella and fimbriae are considered important factors in differentiating the serotypes in some bacterial pathogens, it can be speculated that different environmental pressures are the source of phenotypic or serotypic differentiation from the same origin. On the other hands, S. parauberis did not exhibit notable changes for 4 h when inoculated in the serum from olive flounder. The results presented in this study provide examples of possible molecular evolution in pathogens relevant to the aquaculture industry as a response to different environmental pressure.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Infecções Estreptocócicas , Animais , Edwardsiella/genética , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Linguado/genética , Variação Genética , Estudo de Associação Genômica Ampla/veterinária , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus , Vibrio
11.
Dev Comp Immunol ; 135: 104475, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732223

RESUMO

Hemopexin is a vital glycoprotein for processing excessive iron in blood and functions as an iron scavenger in mammals. Teleosts however, unlike mammals, have two known hemopexin paralogs called warm temperature acclimation-related 65 kDa protein (Wap65-1 and Wap65-2, collectively termed Wap65s). Although Wap65s in rainbow trout have been considered notable biomarkers with significantly higher and/or lower expression under conditions of stress or disease, the individual roles, similarities and differences between the two paralogs are not well known. The aim of this study was to gain an understanding of the characteristics and functions of trout Wap65s from the perspective of iron-metabolism, physiological roles, and relevant immunological responses. The expression of Wap65-1 and -2 in this study was determined in the face of challenges by Aeromonas salmonicida, infectious hematopoietic necrosis virus (IHNV), and iron-dextran. Immuno-histochemistry (IHC) was employed to localize the major cell types for Wap65-2 expression, and trout leukocytes were isolated and incubated with LPS and OxLDL for comprehending the immunological characteristics of Wap65-2. We demonstrate that Wap65-1 is expressed only in the liver but Wap65-2 is systemically expressed in most organs and tissues. Interestingly, Wap65-1 expression was not significantly changed under A. salmonicida and iron-dextran administration, but was significantly decreased under IHNV. In contrast, Wap65-2 was up-regulated in all challenged groups, however with different expression patterns in the blood and liver. These results suggested that the two paralogs may participate in different biological roles. IHC showed that Wap65-2 antibody had high affinity for leukocyte-like cells, and macrophages but not lymphocytes significantly increased expression under LPS and OxLDL stimulation. These results support the conclusion that trout Wap65-2, not Wap65-1 may have conventional hemopexin functions such as reported in mammals including effects on iron metabolism, inflammation, and acute-phase protein.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Aclimatação , Sequência de Aminoácidos , Animais , Dextranos , Proteínas de Peixes/metabolismo , Hemopexina/química , Hemopexina/genética , Hemopexina/metabolismo , Ferro , Lipopolissacarídeos , Mamíferos , Filogenia , Temperatura
12.
Fish Shellfish Immunol ; 121: 205-214, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990808

RESUMO

Heat shock protein 70s (HSP70s) are known to play vital biological processes in rainbow trout. However, information on the numerous roles and classification of many different HSP70s is insufficient. The purpose of this study was to investigate the characteristics of all HSP70s in rainbow trout using multi-dimensional genomic and transcriptomic analyses for inspecting HSP70 homologs, phylogenetic characteristics, DNA motifs, and transcription factor binding sites (TFBSs). Also, the transcriptomic results in conditions of acute thermal stress and Ichthyophthirius multifiliis infection were used to characterize the expression of all HSP70 homologs, and the isoforms of the most sensitive HSP70 were predicted in silico. A total of 23 HSP70s were identified, and they were divided into seven evolutionary groups (groups 1-7). Groups 1 and 2 had relatively longer phylogenetic distances compared to the other groups, which can speculate origin of groups 1 and 2 HSP70s would be different compared to others. With transcriptomic profiling, most HSPs belonging to group 3 showed highly sensitive responses to I. multifiliis infection, not thermal stress, but the group 6 HSP70s had the opposite expression tendencies. Likewise, the composition of the TFBS in each HSP70 was consistent with its group classification. Since TFBSs are widely known to influence transcriptomic expression, they could be one of the major reasons for the different patterns of expression within the HSP70 groups. Moreover, this study demonstrated several isoforms of HSP70a, by far the most sensitive HSP70s, under several stress environments such as hypoxia, thermal, and overcrowding stress. This is an important fundamental study to expand the understanding of HSP70s in rainbow trout as well as for selecting the most sensitive biomarkers for types of stress.


Assuntos
Proteínas de Peixes , Proteínas de Choque Térmico HSP70 , Oncorhynchus mykiss , Animais , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Genômica , Proteínas de Choque Térmico HSP70/genética , Oncorhynchus mykiss/genética , Filogenia , Estresse Fisiológico
13.
Microorganisms ; 9(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204143

RESUMO

Although Carnobacterium maltaromaticum derived from dairy products has been used as a lactic acid bacterium industrially, several studies have reported potential pathogenicity and disease outbreaks. Because strains derived from diseased fish and dairy products are considered potentially virulent and beneficial, respectively, their genotypic and phenotypic characteristics have attracted considerable attention. A genome-wide comparison of 30 genome sequences (13, 3, and 14 strains from diseased aquatic animals, dairy products, and processed food, respectively) was carried out. Additionally, one dairy and two nondairy strains were incubated in nutrient-rich (diluted liquid media) and nutrient-deficient environments (PBS) at pH 10 to compare their alkaline resistance in accordance with different nutritional environments by measuring their optical density and viable bacterial cell counts. Interestingly, only dairy strains carried 11 shared accessory genes, and 8 genes were strongly involved in the V-type ATPase gene cluster. Given that V-type ATPase contributes to resistance to alkaline pH and salts using proton motive force generated via sodium translocation across the membrane, C. maltaromaticum with a V-type ATPase might use nutrients in food under high pH. Indeed, the dairy strain carrying the V-type ATPase exhibited the highest alkaline resistance only in the nutrient-rich environment with significant upregulation of V-type ATPase expression. These results suggest that the gene cluster of V-type ATPase and increased alkaline resistance of dairy strains facilitate adaptation in the long-term ripening of alkaline dairy products.

14.
Front Immunol ; 12: 677730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305907

RESUMO

Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.


Assuntos
Infecções por Cilióforos/genética , Doenças dos Peixes/genética , Interações Hospedeiro-Patógeno/genética , Hymenostomatida/patogenicidade , Aprendizado de Máquina , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/parasitologia , Transcriptoma , Animais , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Brânquias/imunologia , Rim Cefálico/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Fígado/imunologia , Oncorhynchus mykiss/imunologia , RNA-Seq/métodos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Virulência/genética , Virulência/imunologia , Fatores de Virulência
15.
PLoS One ; 16(5): e0252200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038483

RESUMO

Streptococcus parauberis is an important bacterial fish pathogen that causes streptococcosis in a variety of fish species including the olive flounder. Despite its importance in the aquaculture industry, little is known about the survival strategy of S. parauberis in the host. Therefore, the objective of this study was to produce genome-wide transcriptome data and identify key factors for the survival of S. parauberis SPOF3K in its host. To this end, S. parauberis SPOF3K was incubated in olive flounder serum and nutrient-enriched media as a control. Although S. parauberis SPOF3K proliferated in both culture conditions, the transcriptomic patterns of the two groups were very different. Interestingly, the expression levels of genes responsible for the replication of an S. parauberis plasmid in the presence of olive flounder serum were higher than those in the absence of olive flounder serum, indicating that this plasmid may play an important role in the survival and proliferation of S. parauberis in the host. Several ATP-binding cassette transporters known to transport organic substrates (e.g., biotin and osmoprotectants) that are vital for bacterial survival in the host were significantly up-regulated in S. parauberis cultured in serum. In addition, groEL, dnaK operon, and members of the clp protease family, which are known to play important roles in response to various stressors, were up-regulated in S. parauberis incubated in serum, thus limiting damage and facilitating cellular recovery. Moreover, important virulence factors including the hyaluronic acid capsule (has operon), sortase A (srtA), C5a peptidase (scp), and peptidoglycan O-acetyltransferase (oatA) were significantly upregulated in S. paraubers in serum. These results indicate that S. paraubers can resist and evade the humoral immune responses of fish. The transcriptomic data obtained in this study provide a better understanding of the mode of action of S. parauberis in fish.


Assuntos
Streptococcus/genética , Adesinas Bacterianas/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , DNA Bacteriano/genética , Endopeptidases/metabolismo , Doenças dos Peixes/microbiologia , Linguado/microbiologia , Estudo de Associação Genômica Ampla , Ácido Hialurônico/metabolismo , Infecções Estreptocócicas/genética
16.
Curr Microbiol ; 78(6): 2391-2399, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33904975

RESUMO

Nocardiosis is a major problem affecting fish that are farmed in seacages as well as freshwater fish; therefore, deciphering the bacteriological features of Nocardia seriolae is crucial. In particular, a number of studies over the past two years have reported the genome sequence of N. seriolae, and a comparative genomics approach is expected to yield valuable information on its epidemiological characteristics. The purpose of this study was to perform whole-genome sequence analysis of N. seriolae MH196537 from the Japanese eel and to investigate the significant differences noted between strains isolated from freshwater fish and marine fish by using Random Forest, a reliable machine learning algorithm. The Pacbio platform was employed to sequence the MH196537 strain, and genomic information from the other 16 strains was used for comparative analyses. All coding sequences of the 17 strains were categorized in RASTtk Sub-systems. The MH196537 strain had one contig, and it shared a high average nucleotide identity (ANI) with the freshwater strains (0.9994 - 0.9999) rather than the seawater strains (0.9985 - 0.9994). Moreover, 22 RASTtk subsystems carried a different number of genes from each N. seriolae. The fatty acids, lipids, and isoprenoids subsystem showed the highest mean decrease in the Gini index of over 1.5. Interestingly, freshwater strains were found to harbor all of the genes for both the mevalonate (MVA) and non-mevalonate pathways (MEP), whereas only the MEP existed in strains from diseased marine fish. Considering the differences in the byproducts of isoprenoids from the different pathways, it is likely that this will affect host-pathogen interactions; therefore, harboring the different pathways for the synthesis of isoprenoids could be an important pathogenic factor of N. seriolae.


Assuntos
Doenças dos Peixes , Algoritmos , Animais , Genômica , Nocardia , Filogenia
17.
Genes Genomics ; 43(7): 701-712, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33847899

RESUMO

BACKGROUND: Olive flounder (Paralichthys olivaceus) is one of the major cultured fish species in Asia including Korea. However, the mass mortality of olive flounder caused by various pathogens leads to huge economic loss. The pathogens that lead to fish mortality include parasites, bacteria, and viruses that can cause various kinds of diseases. OBJECTIVE: The purpose of this study was to investigate the protein expression patterns in the gills and spleens of olive flounder after artificial infection. We hypothesized that proteomics levels in gills and spleen may be differentially expressed depending on infectious agents. METHODS: To investigate the expression pattern of proteins in gills and spleens, olive flounders were experimentally infected with VHSV (virus), S. parauberis (bacteria), or M. avidus (pathogenic ciliate). Proteins were extracted from the gills and spleens of infected olive flounder. We used 2-DE analysis with LC-MS/MS to investigate proteome changes in infected olive flounders. RESULTS: The results of the LC-MS/MS analyses showed different protein expression profiles depending on pathogenic sources and target organs. Proteins related to cytoskeletal structure like keratin, calmodulin and actin were mostly expressed in the infected gills. Proteins involved in the metabolism pathway like glycolysis were expressed mainly in the spleens. The protein profiles of S. parauberis and VHSV infection groups had many similarities, but the profile of the M. avidus infection group was greatly different in the gill and spleen. CONCLUSION: Our results indicate that measures according to the characteristics of each pathogen are necessary for disease prevention and treatment of farmed fish.


Assuntos
Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Linguado/metabolismo , Proteoma , Animais , Cromatografia Líquida , Doenças dos Peixes/virologia , Linguado/microbiologia , Brânquias/metabolismo , Novirhabdovirus , Oligoimenóforos , Baço/metabolismo , Streptococcus , Espectrometria de Massas em Tandem
18.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766901

RESUMO

Here, we report the complete genome sequence of Flavobacterium psychrophilum FPRT1, isolated from the spleen and kidney of diseased rainbow trout (Oncorhynchus mykiss). Whole-genome sequencing was performed using the PacBio RS II platform, which yielded a circular chromosome of 2,795,347 bp harboring 2,895 protein-coding genes.

19.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276666

RESUMO

In recent years, poikilothermic animals such as fish have increasingly been exposed to stressful high-temperature environments due to global warming. However, systemic changes in fish under thermal stress are not fully understood yet at both the transcriptome and proteome level. Therefore, the objective of this study was to investigate the immuno-physiological responses of fish under extreme thermal stress through integrated multi-omics analysis. Trout were exposed to acute thermal stress by raising water temperature from 15 to 25 °C within 30 min. Head-kidney and plasma samples were collected and used for RNA sequencing and two-dimensional gel electrophoresis. Gene enrichment analysis was performed: differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified to interpret the multi-omics results and identify the relevant biological processes through pathway analysis. Thousands of DEGs and 49 DEPs were identified in fish exposed to thermal stress. Most of these genes and proteins were highly linked to DNA replication, protein processing in the endoplasmic reticulum, cell signaling and structure, glycolysis activation, complement-associated hemolysis, processing of released free hemoglobin, and thrombosis and hypertension/vasoconstriction. Notably, we found that immune disorders mediated by the complement system may trigger hemolysis in thermally stressed fish, which could have serious consequences such as ferroptosis and thrombosis. However, antagonistic activities that decrease cell-free hemoglobin, heme, and iron might be involved in alleviating the side effects of thermally induced immuno-physiological disorders. These factors may represent the major thermal resistance traits that allow fish to overcome extreme thermal stress. Our findings, based on integration of multi-omics data from transcriptomics and proteomics analyses, provide novel insight into the pathogenesis of acute thermal stress and temperature-linked epizootics.


Assuntos
Adaptação Biológica , Perfilação da Expressão Gênica , Metabolômica , Oncorhynchus mykiss/fisiologia , Proteômica , Estresse Fisiológico , Temperatura , Animais , Biomarcadores , Proteínas do Sistema Complemento/imunologia , Biologia Computacional/métodos , Retículo Endoplasmático/metabolismo , Redes Reguladoras de Genes , Glicólise , Hemólise , Metabolômica/métodos , Proteômica/métodos , Transcriptoma
20.
Animals (Basel) ; 10(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854279

RESUMO

Although over-nutrition from overfeeding-induced obesity is known to be highly associated with metabolic and immunological disorders in humans, little is known about overfeeding-induced obesity in fish farming. The purpose of this study was to investigate changes in immuno-physiological parameters, to better understand the potential risk of overfeeding-induced obesity in fish. Commercial feed was provided to fish in the overfed group until they refuse to eat, but fish in the control group was fed with the feed at 1% bodyweight per day. The hemato-serological, histological, and immunological changes were observed at weeks 2 and 8. Rainbow trout leukocytes were co-incubated with oxidized low-density lipoprotein (OxLDL), and the phagocytes engulfing the OxLDL and the presence of apoptotic cells were evaluated. The body weight, body mass index (BMI), and hepatosomatic index (HSI) index were significantly higher in the overfed group, and high lipid accumulation and fatty changes were also observed in their livers, indicating that the feeding regime used in this study led to overfeeding-induced obesity. Likewise, much higher numbers of and larger vacuoles were observed in overfed fish macrophages, showing unclear boundaries between the cytoplasm and extracellular space. In the overfed group, the expression of IL-10, HSP70, TLR2, and CD36 was significantly higher, and lymphocyte apoptosis was more evident, indicating that overfeeding-induced obese fish might have immunologic disorders. This was the first study to demonstrate that overfeeding-induced obesity could cause an immune-physiological imbalance in rainbow trout, making them more vulnerable to infectious diseases and various stressful conditions. This study will contribute to improvements in fish nutrition, feeding practices, fish nutrition, and disease prevention in the aquaculture industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...