Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 5: e1188, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24743743

RESUMO

The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca(2+). Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer's and Parkinson diseases. One key regulator that underlies cell survival and Ca(2+) homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca(2+) dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca(2+) concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca(2+) through the InsP3 receptor (InsP3R). The Ca(2+) efflux in IRE1α-deficient cells correlates with dissociation of the Ca(2+)-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α-TRAF2-ASK1 complex. The increased cytosolic concentration of Ca(2+) induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca(2+) dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca(2+) influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca(2+) homeostasis and cell survival during ER stress and reveal a previously unknown Ca(2+)-mediated cell death signaling between the IRE1α-InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.


Assuntos
Apoptose , Cálcio/metabolismo , Endorribonucleases/metabolismo , Homeostase , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Humanos , Espaço Intracelular/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
2.
Cell Death Dis ; 4: e476, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23348590

RESUMO

Mitochondrial dysfunction and synaptic damage are critical early features of Alzheimer's disease (AD) associated with amyloid ß (Aß) and τ. We previously reported that the scaffolding protein RanBP9, which is overall increased in AD, simultaneously promotes Aß generation and focal adhesion disruption by accelerating the endocytosis of APP and ß1-integrin, respectively. Moreover, RanBP9 induces neurodegeneration in vitro and in vivo and mediates Aß-induced neurotoxicity. However, little is known regarding the mechanisms underlying such neurotoxic processes. Here, we show that RanBP9 induces the loss of mitochondrial membrane potential and increase in mitochondrial superoxides associated with decrease in Bcl-2, increase in Bax protein and oligomerization, fragmentation of mitochondria, and cytochrome c release. RanBP9-induced neurotoxic changes are significantly prevented by the mitochondrial fission inhibitor Mdivi-1 and by classical inhibitors of the mitochondrial apoptosis, XIAP, Bcl-2, and Bcl-xl. RanBP9 physically interacts with the tumor suppressor p73 and increases endogenous p73α levels at both transcriptional and post-translational levels;moreover, the knockdown of endogenous p73 by siRNA effectively blocks RanBP9 and Aß1-42-induced mitochondria-mediated cell death. Conversely, siRNA knockdown of endogenous RanBP9 also suppresses p73-induced apoptosis, suggesting that RanBP9 and p73 have cooperative roles in inducing cell death. Taken together, these finding implicate the RanBP9/p73 complex in mitochondria-mediated apoptosis in addition to its role in enhancing Aß generation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caspases/metabolismo , Células Cultivadas , Ciclina D1/metabolismo , Citocromos c/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Hipocampo/citologia , Hipocampo/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Quinazolinonas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Superóxidos/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...