Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 3405-3413, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236606

RESUMO

We implemented radio frequency-assisted electrostatic force microscopy (RF-EFM) to investigate the electric field response of biaxially strained molybdenum disulfide (MoS2) monolayers (MLs) in the form of mesoscopic bubbles, produced via hydrogen (H)-ion irradiation of the bulk crystal. MoS2 ML, a semiconducting transition metal dichalcogenide, has recently attracted significant attention due to its promising optoelectronic properties, further tunable by strain. Here, we take advantage of the RF excitation to distinguish the intrinsic quantum capacitance of the strained ML from that due to atomic scale defects, presumably sulfur vacancies or H-passivated sulfur vacancies. In fact, at frequencies fRF larger than the inverse defect trapping time, the defect contribution to the total capacitance and to transport is negligible. Using RF-EFM at fRF = 300 MHz, we visualize simultaneously the bubble topography and its quantum capacitance. Our finite-frequency capacitance imaging technique is noninvasive and nanoscale and can contribute to the investigation of time- and spatial-dependent phenomena, such as the electron compressibility in quantum materials, which are difficult to measure by other methods.

2.
Nano Lett ; 23(8): 3202-3208, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053437

RESUMO

The Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) were measured on four series of Co films (1-2.2 nm thick) grown on Pt or Au and covered with h-BN or Cu. Clean h-BN/Co interfaces were obtained by exfoliating h-BN and transferring it onto the Co film in situ in the ultra-high-vacuum evaporation chamber. By comparing h-BN and Cu-covered samples, the DMI induced by the Co/h-BN interface was extracted and found to be comparable in strength to that of the Pt/Co interface, one of the largest known values. The strong observed DMI despite the weak spin-orbit interaction in h-BN supports a Rashba-like origin in agreement with recent theoretical results. Upon combination of it with Pt/Co in Pt/Co/h-BN heterostructures, even stronger PMA and DMI are found which stabilizes skyrmions at room temperature and a low magnetic field.

3.
Nanotechnology ; 33(38)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35636246

RESUMO

Topological magnetic textures, characterized by integer topological chargeS, are potential candidates in future magnetic logic and memory devices, due to their smaller size and expected low threshold current density for their motion. An essential requirement to stabilize them is the Dzyaloshinskii-Moriya interaction (DMI) which promotes a particular chirality, leading to a unique value ofSin a given material. However, recently coexistence of skyrmions and antiskyrmions, with opposite topological charge, in frustrated ferromagnets has been predicted usingJ1-J2-J3classical Heisenberg model, which opens new perspectives, to use the topological charge as an additional degree of freedom. In this work, we propose another approach of using a synthetic antiferromagnetic system, where one of the ferromagnetic (FM) layer has isotropic and the other FM layer has anisotropic DMI to promote the existence of skyrmions and antiskyrmions, respectively. A frustrated interaction arises due to the coupling between the magnetic textures in the FM layers, which enables the stabilization and coexistence of 6 novel elliptical topological textures.

4.
Nano Lett ; 18(12): 7635-7641, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380877

RESUMO

The mechanical manipulation of magnetic nanoparticles is a powerful approach to probing and actuating biological processes in living systems. Implementing this technique in high-throughput assays can be achieved using biocompatible micromagnet arrays. However, the magnetic properties of these arrays are usually indirectly inferred from simulations or Stokes drag measurements, leaving unresolved questions about the actual profile of the magnetic fields at the micrometer scale and the exact magnetic forces that are applied. Here, we exploit the magnetic field sensitivity of nitrogen-vacancy color centers in diamond to map the 3D stray magnetic field produced by a single soft ferromagnetic microstructure. By combining this wide-field optical magnetometry technique with magneto-optic Kerr effect microscopy, we fully analyze the properties of the micromagnets, including their magnetization saturation and their size-dependent magnetic susceptibility. We further show that the high magnetic field gradients produced by the micromagnets, greater than 104 T·m-1 under an applied magnetic field of about 100 mT, enables the manipulation of magnetic nanoparticles smaller than 10 nm inside living cells. This work paves the way for quantitative and parallelized experiments in magnetogenetics and magnetomechanics in cell biology.


Assuntos
Materiais Biocompatíveis/química , Diamante/química , Magnetometria/métodos , Imãs/química , Fenômenos Biomecânicos , Desenho de Equipamento , Células HeLa , Humanos , Lasers , Campos Magnéticos , Magnetometria/instrumentação , Microscopia/instrumentação , Microscopia/métodos , Nanopartículas/química , Nitrogênio/química , Dispositivos Ópticos , Tamanho da Partícula
5.
Phys Rev Lett ; 120(22): 227204, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906179

RESUMO

Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

6.
Phys Rev Lett ; 118(21): 219901, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598656

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.115.267210.

7.
Sci Rep ; 6: 23038, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987937

RESUMO

This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography.

8.
Phys Rev Lett ; 115(26): 267210, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765026

RESUMO

The Dzyaloshinskii-Moriya interaction (DMI) has been recently recognized to play a crucial role in allowing fast domain wall dynamics driven by spin-orbit torques and the generation of magnetic Skyrmions. Here, we unveil the main features and microscopic mechanisms of DMI in Co/Pt bilayers via first principles calculations. We find that the large DMI of the bilayers has a dominant contribution from the spins of the interfacial Co layer. This DMI between the interfacical Co spins extends very weakly away from the interface and is associated with a spin-orbit coupling in the adjacent atomic layer of Pt. Furthermore, no direct correlation is found between DMI and proximity induced magnetism in Pt. These results clarify the underlying mechanisms of DMI at interfaces between ferromagnetic and heavy metals and should help optimizing material combinations for domain wall and Skyrmion-based devices.

9.
Nat Mater ; 13(8): 770-1, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997738
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...