Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785673

RESUMO

Partial information decompositions (PIDs) aim to categorize how a set of source variables provides information about a target variable redundantly, uniquely, or synergetically. The original proposal for such an analysis used a lattice-based approach and gained significant attention. However, finding a suitable underlying decomposition measure is still an open research question at an arbitrary number of discrete random variables. This work proposes a solution with a non-negative PID that satisfies an inclusion-exclusion relation for any f-information measure. The decomposition is constructed from a pointwise perspective of the target variable to take advantage of the equivalence between the Blackwell and zonogon order in this setting. Zonogons are the Neyman-Pearson region for an indicator variable of each target state, and f-information is the expected value of quantifying its boundary. We prove that the proposed decomposition satisfies the desired axioms and guarantees non-negative partial information results. Moreover, we demonstrate how the obtained decomposition can be transformed between different decomposition lattices and that it directly provides a non-negative decomposition of Rényi-information at a transformed inclusion-exclusion relation. Finally, we highlight that the decomposition behaves differently depending on the information measure used and how it can be used for tracing partial information flows through Markov chains.

2.
Microsc Microanal ; 29(5): 1566-1578, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37639397

RESUMO

Micro- and nanoplastics (MNPs) are considered a possible threat to microorganisms in the aquatic environment. Here, we show that total scattering intensity analysis of electron diffraction (ED) data measured by transmission electron microscopy, which yields the electron pair distribution function (ePDF), is a feasible method for the characterization and identification of MNPs down to 100 nm. To demonstrate the applicability, cryo ball-milled powders of the most common polymers [i.e., polyethylene , polypropylene, polyethylene terephthalate, and polyamide] and nano-sized polystyrene and silica spheres were used as model systems. The comparison of the experimentally determined reduced pair density functions (RDFs) with model RDFs derived from crystallographic data of the respective polymers allows the distinction of the different types of polymers. Furthermore, carbon-based polymers are highly beam-sensitive materials. The degradation of the samples under the electron beam was analyzed by conducting time-resolved ED measurements. Changes in the material can be visualized by the RDF analysis of the time-series of ED patterns, and information about the materials in question can be gained by this beam damage analysis. Prospectively, ePDF analytics will help to understand and study more precisely the input of MNPs into the environment.

3.
Entropy (Basel) ; 25(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37509961

RESUMO

The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion-exclusion principle or have resulted in negative partial information components. For constructing a measure, we interpret the achievable type I/II error pairs for predicting each state of a target variable (reachable decision regions) as notions of pointwise uncertainty. For this representation of uncertainty, we construct a distributive lattice with mutual information as consistent valuation and obtain an algebra for the constructed measure. The resulting definition satisfies the original axioms, an inclusion-exclusion principle and provides a non-negative decomposition for an arbitrary number of variables. We demonstrate practical applications of this approach by tracing the flow of information through Markov chains. This can be used to model and analyze the flow of information in communication networks or data processing systems.

4.
Langmuir ; 33(46): 13272-13276, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29091734

RESUMO

A lean synthesis of copper nanoparticles (Cu NP) from CuCl2 in dodecane via formation of Cu(I)-dodecanethiolate (Cu(I)-DDT) and their decomposition paths including spontaneous C-S bond cleavage of the alkanethiol on the surface of Cu NP is presented. The reduction of Cu(I)-DDT by the tert-butylamine-borane complex (TBAB) in dodecane under N2 at elevated temperatures leads to the formation of thiol-protected Cu NP with narrow size distribution in the size range of 3-10 nm depending on the reaction conditions. The Cu NP in the presence of excess dodecanethiol reacts further to Cu2S NP under decomposition of the ligand on the particle surface. The Cu2S formation occurs after a short time at T > 175 °C or within ∼12 h at room temperature. If excess thiol is removed immediately after the synthesis, the resulting colloid shows irreversible aggregation within days or hours. Our results suggest that alkanethiols are not long-term stable on nanocopper surfaces and that the formation of copper(I) sulfide under the cleavage of the C-S bond occurs even at room temperature.

5.
Phys Chem Chem Phys ; 17(8): 5932-41, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25635837

RESUMO

The photoluminescence (PL) of semiconductor nanoparticles (SNP) is strongly modified when the semiconductor is in the proximity of a metal surface or a metal nanoparticle (MNP). The effect may be due to two different phenomena which are (a) (Förster) resonant energy transfer ((F)RET) between the semiconductor and the metal and (b) the enhanced electric field around metallic structures that arises from surface plasmon oscillations. Here we present experimental evidence for enhancement and quenching of the PL of dilute SNP colloidal solutions depending on the amount of admixed MNP and the position of the MNP plasmon band with respect to the excitation wavelength and the optical bands in the SNP. The average distance between an MNP and its next neighbor MNP is varied between ∼0.1 and 2 µm by varying the MNP concentration, whereas that between MNP and SNP as well as between SNP and SNP is kept at about 0.1 µm. A model function based on the rate equations of the system is developed that yields a satisfactory description of the measured data by considering solely FRET between the particle species. The derived function is an extension of the Stern-Volmer equation, as it not only accounts for the energy transfer from the fluorescent SNPs to the MNPs, but also for the transfer of excitation from MNPs to SNPs and between MNPs. This theory provides a deeper insight into the mechanisms of metal-enhanced fluorescence and fluorescence quenching phenomena.

6.
Org Biomol Chem ; 13(1): 81-97, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25212389

RESUMO

The mucin MUC1 is a glycoprotein involved in fundamental biological processes, which can be found over-expressed and with a distinctly altered glycan pattern on epithelial tumor cells; thus it is a promising target structure in the quest for effective carbohydrate-based cancer vaccines and immunotherapeutics. Natural glycopeptide antigens indicate only a low immunogenicity and a T-cell independent immune response; however, this major drawback can be overcome by coupling of glycopeptide antigens multivalently to immunostimulating carrier platforms. In particular, gold nanoparticles are well suited as templates for the multivalent presentation of glycopeptide antigens, due to their remarkably high surface-to-volume ratio in combination with their high biostability. In this work the synthesis of novel MUC1-glycopeptide antigens and their coupling to gold nanoparticles of different sizes are presented. In addition, the development of a new dot-blot immunoassay to test the potential antigen-antibody binding is introduced.


Assuntos
Glicopeptídeos/química , Glicopeptídeos/síntese química , Coloide de Ouro/química , Mucina-1/química , Técnicas de Química Sintética , Glicopeptídeos/imunologia , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio , Mucina-1/imunologia , Técnicas de Microbalança de Cristal de Quartzo
7.
Angew Chem Int Ed Engl ; 51(2): 419-22, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22128073

RESUMO

Joining the stable: The first examples of the highly instable selenenyl fluorides RSeF are prepared from the reaction on the tin selenide RSeSnMe(3) with XeF(2). Through the use of extremely large protecting groups (m-terphenyl ligands) which stabilizes the RSeF units against disproportionation, the compounds could be isolated and characterized by NMR spectroscopy and single-crystal structure analysis (see structure).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...