Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(5): 593-603, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592684

RESUMO

Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.


Assuntos
Ferritinas , Humanos , Ferritinas/química , Ferritinas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sistemas de Liberação de Medicamentos
2.
Res Sq ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38343795

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

3.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
5.
ArXiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076521

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

6.
Elife ; 122023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975198

RESUMO

The voltage-gated sodium (NaV) channel NaV1.7 has been identified as a potential novel analgesic target due to its involvement in human pain syndromes. However, clinically available NaV channel-blocking drugs are not selective among the nine NaV channel subtypes, NaV1.1-NaV1.9. Moreover, the two currently known classes of NaV1.7 subtype-selective inhibitors (aryl- and acylsulfonamides) have undesirable characteristics that may limit their development. To this point understanding of the structure-activity relationships of the acylsulfonamide class of NaV1.7 inhibitors, exemplified by the clinical development candidate GDC-0310, has been based solely on a single co-crystal structure of an arylsulfonamide inhibitor bound to voltage-sensing domain 4 (VSD4). To advance inhibitor design targeting the NaV1.7 channel, we pursued high-resolution ligand-bound NaV1.7-VSD4 structures using cryogenic electron microscopy (cryo-EM). Here, we report that GDC-0310 engages the NaV1.7-VSD4 through an unexpected binding mode orthogonal to the arylsulfonamide inhibitor class binding pose, which identifies a previously unknown ligand binding site in NaV channels. This finding enabled the design of a novel hybrid inhibitor series that bridges the aryl- and acylsulfonamide binding pockets and allows for the generation of molecules with substantially differentiated structures and properties. Overall, our study highlights the power of cryo-EM methods to pursue challenging drug targets using iterative and high-resolution structure-guided inhibitor design. This work also underscores an important role of the membrane bilayer in the optimization of selective NaV channel modulators targeting VSD4.


Assuntos
Microscopia Crioeletrônica , Humanos , Ligantes , Domínios Proteicos , Sítios de Ligação , Relação Estrutura-Atividade
7.
Nat Commun ; 13(1): 5222, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064790

RESUMO

The trimeric serine protease HTRA1 is a genetic risk factor associated with geographic atrophy (GA), a currently untreatable form of age-related macular degeneration. Here, we describe the allosteric inhibition mechanism of HTRA1 by a clinical Fab fragment, currently being evaluated for GA treatment. Using cryo-EM, X-ray crystallography and biochemical assays we identify the exposed LoopA of HTRA1 as the sole Fab epitope, which is approximately 30 Å away from the active site. The cryo-EM structure of the HTRA1:Fab complex in combination with molecular dynamics simulations revealed that Fab binding to LoopA locks HTRA1 in a non-competent conformational state, incapable of supporting catalysis. Moreover, grafting the HTRA1-LoopA epitope onto HTRA2 and HTRA3 transferred the allosteric inhibition mechanism. This suggests a conserved conformational lock mechanism across the HTRA family and a critical role of LoopA for catalysis, which was supported by the reduced activity of HTRA1-3 upon LoopA deletion or perturbation. This study reveals the long-range inhibition mechanism of the clinical Fab and identifies an essential function of the exposed LoopA for activity of HTRA family proteases.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Degeneração Macular , Serina Endopeptidases , Cristalografia por Raios X , Epitopos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
8.
Sci Adv ; 8(10): eabm2536, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275719

RESUMO

Human cytomegalovirus (HCMV) represents the viral leading cause of congenital birth defects and uses the gH/gL/UL128-130-131A complex (Pentamer) to enter different cell types, including epithelial and endothelial cells. Upon infection, Pentamer elicits the most potent neutralizing response against HCMV, representing a key vaccine candidate. Despite its relevance, the structural basis for Pentamer receptor recognition and antibody neutralization is largely unknown. Here, we determine the structures of Pentamer bound to neuropilin 2 (NRP2) and a set of potent neutralizing antibodies against HCMV. Moreover, we identify thrombomodulin (THBD) as a functional HCMV receptor and determine the structures of the Pentamer-THBD complex. Unexpectedly, both NRP2 and THBD also promote dimerization of Pentamer. Our results provide a framework for understanding HCMV receptor engagement, cell entry, antibody neutralization, and outline strategies for antiviral therapies against HCMV.

9.
J Vis Exp ; (172)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34180891

RESUMO

Cryogenic electron microscopy (cryoEM) has become an integral part of many drug-discovery projects because crystallography of the protein target is not always achievable and cryoEM provides an alternative means to support structure-based ligand design. When dealing with a large number of distinct projects, and within each project a potentially large number of ligand-protein co-structures, accurate record keeping rapidly becomes challenging. Many experimental parameters are tuned for each target, including at the sample preparation, grid preparation, and microscopy stages. Therefore, accurate record keeping can be crucially important to enable long-term reproducibility, and to facilitate efficient teamwork, especially when steps of the cryoEM workflow are performed by different operators. To help deal with this challenge, we developed a web-based information management system for cryoEM, called gP2S. The application keeps track of each experiment, from sample to final atomic model, in the context of projects, a list of which is maintained in the application, or externally in a separate system. User-defined controlled vocabularies of consumables, equipment, protocols and software help describe each step of the cryoEM workflow in a structured manner. gP2S is widely configurable and, depending on the team's needs, may exist as a standalone product or be a part of a broader ecosystem of scientific applications, integrating via REST APIs with project management tools, applications tracking the production of proteins or of small molecules ligands, or applications automating data collection and storage. Users can register details of each grid and microscopy session including key experimental metadata and parameter values, and the lineage of each experimental artifact (sample, grid, microscopy session, map, etc.) is recorded. gP2S serves as a cryoEM experimental workflow organizer that enables accurate record keeping for teams, and is available under an open-source license.


Assuntos
Ecossistema , Software , Microscopia Crioeletrônica , Gestão da Informação , Reprodutibilidade dos Testes
10.
J Pharm Sci ; 110(6): 2362-2371, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33652014

RESUMO

Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.


Assuntos
Amiloide , Peptídeos , Dissulfetos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos de Peptídeos
11.
J Med Chem ; 64(7): 3843-3869, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749283

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium-permeable ion channel highly expressed in the primary sensory neurons functioning as a polymodal sensor for exogenous and endogenous stimuli and has generated widespread interest as a target for inhibition due to its implication in neuropathic pain and respiratory disease. Herein, we describe the optimization of a series of potent, selective, and orally bioavailable TRPA1 small molecule antagonists, leading to the discovery of a novel tetrahydrofuran-based linker. Given the balance of physicochemical properties and strong in vivo target engagement in a rat AITC-induced pain assay, compound 20 was progressed into a guinea pig ovalbumin asthma model where it exhibited significant dose-dependent reduction of inflammatory response. Furthermore, the structure of the TRPA1 channel bound to compound 21 was determined via cryogenic electron microscopy to a resolution of 3 Å, revealing the binding site and mechanism of action for this class of antagonists.


Assuntos
Asma/tratamento farmacológico , Furanos/uso terapêutico , Purinas/uso terapêutico , Canal de Cátion TRPA1/antagonistas & inibidores , Animais , Asma/induzido quimicamente , Asma/complicações , Células CHO , Cricetulus , Furanos/síntese química , Furanos/metabolismo , Cobaias , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Ligantes , Masculino , Estrutura Molecular , Ovalbumina , Oxidiazóis/síntese química , Oxidiazóis/metabolismo , Oxidiazóis/uso terapêutico , Ligação Proteica , Purinas/síntese química , Purinas/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Canal de Cátion TRPA1/metabolismo
12.
Cell ; 184(5): 1232-1244.e16, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626330

RESUMO

Human cytomegalovirus (HCMV) infects the majority of the human population and represents the leading viral cause of congenital birth defects. HCMV utilizes the glycoproteins gHgLgO (Trimer) to bind to platelet-derived growth factor receptor alpha (PDGFRα) and transforming growth factor beta receptor 3 (TGFßR3) to gain entry into multiple cell types. This complex is targeted by potent neutralizing antibodies and represents an important candidate for therapeutics against HCMV. Here, we determine three cryogenic electron microscopy (cryo-EM) structures of the trimer and the details of its interactions with four binding partners: the receptor proteins PDGFRα and TGFßR3 as well as two broadly neutralizing antibodies. Trimer binding to PDGFRα and TGFßR3 is mutually exclusive, suggesting that they function as independent entry receptors. In addition, Trimer-PDGFRα interaction has an inhibitory effect on PDGFRα signaling. Our results provide a framework for understanding HCMV receptor engagement, neutralization, and the development of anti-viral strategies against HCMV.


Assuntos
Citomegalovirus/química , Glicoproteínas de Membrana/química , Proteínas do Envelope Viral/química , Internalização do Vírus , Microscopia Crioeletrônica , Citomegalovirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas do Envelope Viral/metabolismo
13.
14.
Neuron ; 109(2): 273-284.e4, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33152265

RESUMO

The TRPA1 ion channel is activated by electrophilic compounds through the covalent modification of intracellular cysteine residues. How non-covalent agonists activate the channel and whether covalent and non-covalent agonists elicit the same physiological responses are not understood. Here, we report the discovery of a non-covalent agonist, GNE551, and determine a cryo-EM structure of the TRPA1-GNE551 complex, revealing a distinct binding pocket and ligand-interaction mechanism. Unlike the covalent agonist allyl isothiocyanate, which elicits channel desensitization, tachyphylaxis, and transient pain, GNE551 activates TRPA1 into a distinct conducting state without desensitization and induces persistent pain. Furthermore, GNE551-evoked pain is relatively insensitive to antagonist treatment. Thus, we demonstrate the biased agonism of TRPA1, a finding that has important implications for the discovery of effective drugs tailored to different disease etiologies.


Assuntos
Medição da Dor/métodos , Canal de Cátion TRPA1/agonistas , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Ligantes , Masculino , Medição da Dor/efeitos dos fármacos , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Canal de Cátion TRPA1/química
15.
Science ; 367(6483): 1224-1230, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32079680

RESUMO

Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.


Assuntos
Antígenos CD20/química , Rituximab/química , Antígenos CD20/imunologia , Proteínas do Sistema Complemento/imunologia , Microscopia Crioeletrônica , Humanos , Fragmentos Fab das Imunoglobulinas/química , Conformação Proteica , Multimerização Proteica , Rituximab/imunologia
16.
Nat Commun ; 10(1): 3070, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296852

RESUMO

CARD9 and CARD11 drive immune cell activation by nucleating Bcl10 polymerization, but are held in an autoinhibited state prior to stimulation. Here, we elucidate the structural basis for this autoinhibition by determining the structure of a region of CARD9 that includes an extensive interface between its caspase recruitment domain (CARD) and coiled-coil domain. We demonstrate, for both CARD9 and CARD11, that disruption of this interface leads to hyperactivation in cells and to the formation of Bcl10-templating filaments in vitro, illuminating the mechanism of action of numerous oncogenic mutations of CARD11. These structural insights enable us to characterize two similar, yet distinct, mechanisms by which autoinhibition is relieved in the course of canonical CARD9 or CARD11 activation. We also dissect the molecular determinants of helical template assembly by solving the structure of the CARD9 filament. Taken together, these findings delineate the structural mechanisms of inhibition and activation within this protein family.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/ultraestrutura , Guanilato Ciclase/ultraestrutura , Domínios Proteicos , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Microscopia Crioeletrônica , Guanilato Ciclase/genética , Guanilato Ciclase/imunologia , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Multimerização Proteica/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de Sinais/imunologia
17.
Science ; 363(6433)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30733386

RESUMO

Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Baratas , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Domínios Proteicos , Proteínas Recombinantes de Fusão/química
19.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661758

RESUMO

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/ultraestrutura , Peptídeos/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Células HEK293 , Humanos , Ativação do Canal Iônico , Peptídeos/toxicidade , Domínios Proteicos , Venenos de Aranha/toxicidade , Aranhas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo
20.
J Biol Chem ; 293(43): 16803-16817, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206119

RESUMO

The caspase recruitment domain-containing protein 9 (CARD9)-B-cell lymphoma/leukemia 10 (Bcl10) signaling axis is activated in myeloid cells during the innate immune response to a variety of diverse pathogens. This signaling pathway requires a critical caspase recruitment domain (CARD)-CARD interaction between CARD9 and Bcl10 that promotes downstream activation of factors, including NF-κB and the mitogen-activated protein kinase (MAPK) p38. Despite these insights, CARD9 remains structurally uncharacterized, and little mechanistic understanding of its regulation exists. We unexpectedly found here that the CARD in CARD9 binds to Zn2+ with picomolar affinity-a concentration comparable with the levels of readily accessible Zn2+ in the cytosol. NMR solution structures of the CARD9-CARD in the apo and Zn2+-bound states revealed that Zn2+ has little effect on the ground-state structure of the CARD; yet the stability of the domain increased considerably upon Zn2+ binding, with a concomitant reduction in conformational flexibility. Moreover, Zn2+ binding inhibited polymerization of the CARD9-CARD into helical assemblies. Here, we also present a 20-Å resolution negative-stain EM (NS-EM) structure of these filamentous assemblies and show that they adopt a similar helical symmetry as reported previously for filaments of the Bcl10 CARD. Using both bulk assays and direct NS-EM visualization, we further show that the CARD9-CARD assemblies can directly template and thereby nucleate Bcl10 polymerization, a capacity considered critical to propagation of the CARD9-Bcl10 signaling cascade. Our findings indicate that CARD9 is a potential target of Zn2+-mediated signaling that affects Bcl10 polymerization in innate immune responses.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Zinco/metabolismo , Proteína 10 de Linfoma CCL de Células B/química , Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/genética , Cristalografia por Raios X , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Polimerização , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Zinco/química , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...