Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38702210

RESUMO

OBJECTIVES: To determine whether water sorption and solubility of a recently introduced self-adhesive cement is comparable to two clinically tested resin composite cements after thermal aging, and if this is affected by the curing mode. Whether water sorption is correlated with color difference and biaxial flexural strength was also investigated. METHODS: Water sorption and solubility of three resin composite cements {RelyX Universal (RUV), (Panavia V5 (PV5), Panavia SA plus (PSA)} were measured after thermal aging. Disk-shaped specimens were either light-cured or autopolymerized (n = 15 per group). Color difference ΔE00 and biaxial flexural strength were also obtained. RESULTS: Sorption was highest for RUV (auto: 54.9 ± 9.0 µg/mm3, light: 49.7 ± 4.9 µg/mm3), followed by PSA (auto: 37.7 ± 1.4 µg/mm3, light: 34.5 ± 1.1 µg/mm3) and PV5 (auto: 21.7 ± 0.7 µg/mm3, light: 22.1 ± 0.4 µg/mm3). Light-curing reduced solubility values, particularly for RUV (from 60.7 ± 20.8 µg/mm3 to 6.4 ± 0.8 µg/mm3). Color differences of ΔE00 > 1.8 (considered clinically not acceptable) were noted after aging for RUV and PSA. Sorption and ΔE00 values after aging were correlated linearly (R2 = 0.970). Biaxial flexural strength values were highest for PV5 (light: 153.4 ± 15.9 MPa; auto: 133.2 ± 18.0 MPa) and lowest for RUV (light: 99.3 ± 12.8 MPa; auto: 35.1 ± 8.3 MPa). SIGNIFICANCE: Light-curing has beneficial effects on sorption, color stability, and biaxial flexural strength of resin composite cements. Cements containing 2-hydroxymethacrylate such as RUV and PSA are more prone to water sorption and color changes.

2.
J Esthet Restor Dent ; 36(5): 804-812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308570

RESUMO

OBJECTIVE: The composition of universal adhesives is highly diverse. The purpose of this in vitro study was to compare the shear bond strength of a composite with five different universal adhesives to human enamel and dentin. MATERIALS AND METHODS: The shear bond strength of a composite (G-aenial Universal Injectable) to human enamel and dentin was tested in selective enamel etching mode before and after thermocyclic aging (10,000 cycles) using five different universal adhesive systems (Adhese Universal VivaPen, Clearfil Universal Bond Quick, G-Premio Bond, Prime&Bond active, and Scotchbond Universal Plus). Two-bottle systems (OptiBond FL and G2-Bond Universal) were used as control. Scanning electron microscopy was conducted of the bonding interface. RESULTS: Significant differences in shear bond strength values were found among the five evaluated universal adhesives. Lowest shear bond strength values were observed for 2-hydroxyethylmethacrylate (HEMA)-free systems. Thermocyclic aging did not significantly reduce shear bond strength values indicating that the initial bond remains stable. CONCLUSIONS: The clinical use of universal adhesives Adhese Universal VivaPen, Clearfil Universal Bond Quick, and Scotchbond Universal Plus can be encouraged as they provided comparable or even better shear bond strength values than the two-bottle controls. CLINICAL SIGNIFICANCE: Universal adhesives that were developed for the same indication and approved for clinical use demonstrated variety in shear bond strength values. When applied in the selective enamel etching mode, a stable bond can be expected from adhesives containing HEMA and monomers with phosphate groups.


Assuntos
Colagem Dentária , Cimentos Dentários , Humanos , Adesivos Dentinários/química , Teste de Materiais , Cimentos de Resina/química , Esmalte Dentário , Dentina
3.
Clin Oral Implants Res ; 35(4): 419-426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329172

RESUMO

OBJECTIVES: To simulate the replacement of a premolar with an implant-supported cantilever fixed dental prosthesis (ICFDP) and how the fracture load is affected by implant type, positioning within the zirconia blank, and aging protocol. MATERIALS AND METHODS: Seventy-two ICFDPs were designed either within the enamel- or dentin layer of a 4Y-PSZ blank for bone-level and tissue-level titanium-zirconium implants. Fracture load was obtained on the cantilever at baseline (no aging) or after aging in a chewing simulator with the load applied within the implant axis (axial aging) or on the cantilever (12 groups with n = 6). A three-way ANOVA was applied (α = .05). RESULTS: A three-way ANOVA revealed a significant effect on fracture load values of implant type (p = .006) and aging (p < .001) but not for the position within the zirconia blank (p = .847). Fracture load values significantly increased from baseline bone level (608 ± 118 N) and tissue level (880 ± 293 N) when the implants were aged axially, with higher values for tissue level (1065 ± 182 N) than bone level (797 ± 113 N) (p < .001). However, when the force was applied to the cantilever, fracture load values decreased significantly for tissue-level (493 ± 70 N), while values for bone-level implants remained stable (690 ± 135 N). CONCLUSIONS: For ICFDPs, the use of bone-level implants is reasonable as catastrophic failures are likely to be restricted to the restoration, whereas with tissue-level implants, the transmucosal portion of the implant is susceptible to deformation, making repair more difficult.


Assuntos
Implantes Dentários , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Zircônio , Falha de Restauração Dentária , Teste de Materiais
4.
Sci Rep ; 13(1): 13428, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596293

RESUMO

Controlling biofilm formation in the oral cavity during orthodontic treatments is crucial. Therefore, antimicrobial surfaces for invisible dental appliances are of interest to both therapists and patients. Here we present a cellulose-based thermoformable material used for invisible braces that can be loaded with essential oils (EOs) having antibacterial and antifungal properties. We hypothesize that this material can absorb and release EOs, thus providing an antimicrobial effect without compromising the safety and mechanical properties necessary for dental invisible braces. Conventional microbiology and isothermal microcalorimetry analyses revealed that the thermoformable material loaded with essential oils significantly delayed the biofilm formation of oral streptococci (S. mutans and S. mitis) under static conditions (p < 0.05) and while simulating saliva flow (p < 0.05). In addition, cytotoxicity tests (ISO 10993-5), revealed that the loaded material is well tolerated by human gingival fibroblasts. Finally, the loading with antibacterial agents did not significantly alter the mechanical properties and stability of the material (initial force (p = 0.916); initial stress (p = 0.465)). Compared to gold-standard clear aligner materials, this material offers a reliable transmission of forces for orthodontic treatments. Moreover, this approach exhibits the potential for acting as an oral drug delivery platform for multiple compounds.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Braquetes Ortodônticos , Humanos , Antibacterianos/farmacologia , Celulose , Óleos Voláteis/farmacologia , Biofilmes
5.
Clin Oral Implants Res ; 34(10): 1118-1126, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37489537

RESUMO

OBJECTIVES: Composition of implant material and its surface structure is decisive for oral biofilm accumulation. This study investigated biofilm formation on eight different materials. MATERIALS AND METHODS: Eighteen healthy subjects wore intraoral splints fitted with two sets of eight materials for 24 h: zirconia [ZrO2 ]; silver-gold-palladium [AgAuPd]; titanium zirconium [TiZr]; Pagalinor [PA]; hydroxyapatite [HA]; silver-platinum [AgPt]; titanium aluminum niobium [TAN]; titanium grade4 [TiGr4]. Total biomass was stained by safranin to assess plaque accumulation while conventional culturing (CFU) was conducted to investigate viable parts of the biofilm. Cell viability of human gingival fibroblasts (HGF-1) was assessed in vitro. Statistical evaluation was performed with linear mixed-effects models to compare materials (geometric mean ratios, 95% CI), with the level of significance set at ɑ = .05. RESULTS: Less biofilm mass and CFU were found on noble metal alloys (AgPt, AgAuPd, and PA). Compared to AgPt, PA had 2.7-times higher biofilm mass value, AgAuPd was 3.9-times, TiGr4 was 4.1-times, TiZr was 5.9-times, TAN was 7.7-times, HA was 7.8-times, and ZrO2 was 9.1-times higher (each p < .001). Similarly, CFU data were significantly lower on AgPt, AgAuPd had 4.1-times higher CFU values, PA was 8.9-times, TiGr4 was 11.2-times, HA was 12.5-times, TiZr was 13.3-times, TAN was 16.9-times, and ZrO2 was 18.5-times higher (each p < .001). HGF-1 viability varied between 47 ± 24.5% (HA) and 94.4 ± 24.6% (PA). CONCLUSION: Noble alloys are considered as beneficial materials for the transmucosal part of oral implants, as less biofilm mass, lower bacterial counts, and greater cell viability were detected than on titanium- or zirconia-based materials.


Assuntos
Implantes Dentários , Zircônio , Humanos , Zircônio/química , Implantes Dentários/microbiologia , Durapatita/farmacologia , Titânio/química , Prata , Materiais Dentários/química , Biofilmes , Ligas , Propriedades de Superfície
6.
Materials (Basel) ; 16(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36836985

RESUMO

The aim of this study was to find a suitable material combination to avoid cement excess in the marginal region of one-piece zirconia implant-supported restorations by means of a hybrid crown consisting of a meso- and a suprastructure. One-piece zirconia implants (n = 120) were embedded in epoxy resin. Microfilled resin composite mesostructures (n = 60), designed as caps, were bonded on the implant abutment with a primer only. A molar crown was constructed and cemented with a resin cement on top of the mesostructure as a suprastructure out of feldspar ceramic (n = 12), lithium-disilicate (n = 24), or zirconia (n = 24). Fracture load (n = 6) and retention force (n = 6) were measured immediately after storage in distilled water at 37 °C for 24 h, as well as after an additional exposure to artificial aging in a chewing simulator and simultaneous thermal cycling. For the measurement of the fracture load, monolithic crowns made of the employed restorative materials and identical in shape to the hybrid crowns served as controls (n = 6 each). Fracture load values for feldspar ceramic and lithium-disilicate hybrid crowns were slightly higher than those for the respective monolithic crowns at baseline and after aging, which was statistically significant only for feldspar crowns after aging. In contrast, fracture load values for zirconia monolithic crowns were higher than those for zirconia hybrid crowns, which was only statistically significant after aging. Artificial aging reduced the fracture load of feldspar and lithium-disilicate crowns both for hybrid and monolithic crowns. The effect was only statistically significant for lithium disilicate hybrid crowns. The fracture load for hybrid and monolithic zirconia crowns was increased by artificial aging without reaching statistical significance. The retention force of lithium-disilicate and zirconia hybrid crowns was not affected by artificial aging. Taking into account retention force and fracture load, lithium-disilicate hybrid crowns showed promising results.

7.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769917

RESUMO

The aim was to investigate how the surface treatment and the process of accelerated ageing of zirconia for dental implants affect the biaxial flexural strength and hardness. Zirconia discs with a diameter of 12.6 mm were subjected to either one of the following treatments: polishing (Zp); polishing and heat treatment at 1250 °C for 1 h (Zpt); machining (Zm); machining and heat treatment (Zmt); or sandblasting, acid-etching, and heat treatment (Z14) (n = 45 per group). Biaxial flexural strength and Martens hardness (HM) were measured without further treatment and after accelerated ageing for 5 h or 5 × 5 h according to ISO 13356 (n = 15 per group). Two-way ANOVA was applied to test the effect of surface treatment and ageing (α = 0.05). The reliability of the specimens was described with Weibull two-parameter distribution of biaxial flexural strength data. Overall, the surface treatment (p < 0.001) and ageing (p = 0.012) revealed a significant effect on biaxial flexural strength values, while HM was only affected by the surface treatment (p < 0.001) but not ageing (p = 0.160). Surface treatment significantly affected HM (p < 0.001) but not ageing (p = 0.160). The applied surface treatments affected the biaxial flexural strength and HM of zirconia. For accelerated ageing, a duration of both 5 h and 5 × 5 h is recommended to evaluate the effect of surface treatments. Zm was the most reliable surface as it was least affected by ageing and provided low standard deviations of biaxial flexural strength values.

8.
J Prosthet Dent ; 129(6): 939-945, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34598769

RESUMO

STATEMENT OF PROBLEM: Occlusal devices can be either conventionally processed, milled, or printed. However, little is known about the biocompatibility of 3D printing resin materials. PURPOSE: The purpose of this in vitro study was to compare the viability and morphology of human gingival fibroblast cells (HFG-1) after cultivation on conventionally processed, milled, and printed occlusal device materials with different surface treatments. MATERIAL AND METHODS: Disks of a conventionally processed (PalaXpress Clear [pP]), milled (Yamahachi PMMA Clear [sY]), and 2 different printed materials (Dental LT Clear Resin [aD]; Freeprint splint [aF]) were prepared. The surfaces of the specimens were finished by using 2 different treatments (unpolished and polished with P1200-grit silicon carbide paper). HGF-1 cells were cultivated on the specimens for 24 hours, and a viability assay was performed by using polystyrene disks as a control (n=9 disks per group). Cell morphology and the topography of the specimens were examined with scanning electron microscopy (n=3 disks per group). Two-way analysis of variance was applied to determine the effect of material and surface treatment followed by the post hoc Fisher least significant difference test (α=.05). RESULTS: Overall, material (P<.001) and surface treatment (P<.001) significantly influenced the viability of HGF-1 cells. The viability of cells on all specimens displayed mean values between 0.85 and 1.01 compared with the control except for unpolished aD (0.00 ±0.07) and aF (0.02 ±0.05) that had only a few cells with a round shape. CONCLUSIONS: The behavior of HGF-1 cells on conventionally processed and milled specimens was similar and not dependent on the surface treatment. Unpolished printed specimens had a cytotoxic effect. However, after polishing, cell behavior was similar to that of the conventionally processed and milled specimens.


Assuntos
Materiais Dentários , Impressão Tridimensional , Humanos , Teste de Materiais , Fibroblastos , Propriedades de Superfície
9.
J Prosthet Dent ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36153187

RESUMO

STATEMENT OF PROBLEM: The high strength of zirconia makes the removal of zirconia restorations challenging and time consuming. Whether diamond rotary instruments marketed for removing zirconia restorations are more efficient is unclear. PURPOSE: The purpose of this in vitro study was to compare the efficiency of diamond rotary instruments specifically marketed to cut zirconia with the efficiency of a conventional diamond rotary instrument. MATERIAL AND METHODS: Two diamond rotary instruments marketed to cut zirconia (JOTA Zirkon Cut Z838L [JOT] and Intensiv ZirconCut Zr02/10 [IZC]) and a conventional diamond rotary instrument (Intensiv FG 334/6 [IFG]) were tested on 2 zirconia materials: 3Y-TZP (IPS ZirCAD LT) and a multilayered 4Y-TZP (IPS ZirCAD MT Multi). Zirconia specimens (2 mm) were cut under water cooling using a force of 2 N or 6 N. Cutting times and maximum temperatures at the tip of the diamond rotary instruments were recorded. The surface roughness before and after use was measured, and the elemental composition was analyzed. RESULTS: Overall, cutting times were shorter for IFG (85 seconds) and IZC (100 seconds) than for the JOT (182 seconds). Cutting times were shorter for MT zirconia than for LT zirconia. Higher temperatures (2 N: 24.6 °C, 6 N: 36.7 °C) and lower surface roughness occurred with higher cutting loads. Impurities of diamond particles were seen for JOT. The diamond particle embedding materials were either nickel alloys (IFG and JOT) or a resin material (IZC). CONCLUSIONS: Diamond rotary instruments marketed for cutting zirconia did not perform better or generate less heat compared with a conventional diamond rotary instrument. A load of 2 N with sufficient water cooling is recommended for cutting zirconia to avoid an extensive temperature increase.

10.
Front Bioeng Biotechnol ; 10: 989729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159699

RESUMO

Polylactic acid (PLA) has been widely used as filaments for material extrusion additive manufacturing (AM) to develop patient-specific scaffolds in bone tissue engineering. Hydroxyapatite (HA), a major component of natural bone, has been extensively recognized as an osteoconductive biomolecule. Here, inspired by the mussel-adhesive phenomenon, in this study, polydopamine (PDA) coating was applied to the surface of 3D printed PLA scaffolds (PLA@PDA), acting as a versatile adhesive platform for immobilizing HA nanoparticles (nHA). Comprehensive analyses were performed to understand the physicochemical properties of the 3D-printed PLA scaffold functionalized with nHA and PDA for their potent clinical application as a bone regenerative substitute. Scanning electron microscopy (SEM) and element dispersive X-ray (EDX) confirmed a successful loading of nHA particles on the surface of PLA@PDA after 3 and 7 days of coating (PLA@PDA-HA3 and PLA@PDA-HA7), while the surface micromorphology and porosity remain unchanged after surface modification. The thermogravimetric analysis (TGA) showed that 7.7 % and 12.3% mass ratio of nHA were loaded on the PLA scaffold surface, respectively. The wettability test indicated that the hydrophilicity of nHA-coated scaffolds was greatly enhanced, while the mechanical properties remained uncompromised. The 3D laser scanning confocal microscope (3DLS) images revealed that the surface roughness was significantly increased, reaching Sa (arithmetic mean height) of 0.402 µm in PLA@PDA-HA7. Twenty-eight days of in-vitro degradation results showed that the introduction of nHA to the PLA surface enhances its degradation properties, as evidenced by the SEM images and weight loss test. Furthermore, a sustainable release of Ca2+ from PLA@PDA-HA3 and PLA@PDA-HA7 was recorded, during the degradation process. In contrast, the released hydroxyl group of nHA tends to neutralize the local acidic environments, which was more conducive to osteoblastic differentiation and extracellular mineralization. Taken together, this facile surface modification provides 3D printed PLA scaffolds with effective bone regenerative properties by depositing Ca2+ contents, improving surface hydrophilicity, and enhancing the in-vitro degradation rate.

11.
J Mater Sci Mater Med ; 33(8): 61, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849225

RESUMO

Bone graft materials are applied in patients to augment bone defects and enable the insertion of an implant in its ideal position. However, the currently available augmentation materials do not meet the requirements of being completely resorbed and replaced by new bone within 3 to 6 months. A novel electrospun cotton-wool like material (Bonewool®, Zurich Biomaterials LLC, Zurich, Switzerland) consisting of biodegradable poly(lactic-co-glycolic) acid (PLGA) fibers with incorporated amorphous ß-tricalcium phosphate (ß-TCP) nanoparticles has been compared to a frequently used bovine derived hydroxyapatite (Bio-Oss®, Geistlich Pharma, Wolhusen, Switzerland) in vitro. The material composition was determined and the degradation behavior (calcium release and pH in different solutions) as well as bioactivity has been measured. Degradation behavior of PLGA/ß-TCP was generally more progressive than for Bio-Oss®, indicating that this material is potentially completely resorbable. Graphical abstract.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Animais , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Bovinos , Humanos
12.
Head Face Med ; 18(1): 18, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690829

RESUMO

BACKGROUND: Human gingival fibroblast (HGF-1) cells in the connective tissue provide an effective barrier between the alveolar bone and the oral environment. Cement margins of restorations with intrasulcular preparation or cemented implant restorations are in contact with HGF cells. However, it is unknown to what extend the cement surface finish affects the behavior of HGF cells. The purpose of this study was to compare the behavior of HGF-1 cells in contact with two different resin composite cements with three different surface treatments after light-curing and autopolymerization, respectively. METHODS: Disks of one adhesive (Multilink Automix, Ivoclar Vivadent [MLA]) and one self-adhesive (RelyX Unicem 2 Automix, 3 M [RUN]) resin composite cement were either light-cured or autopolymerized. Specimen surfaces were prepared with the oxygen inhibition layer intact, polished with P2500-grit silicon carbide paper or treated with a scaler. Cells were cultivated on the specimens for 24 h. Viability assay was performed, and cell morphology was examined with scanning electron microscopy. Additionally, roughness parameters of the specimen were analyzed with a 3D laser scanning microscope. Three-way ANOVA was applied to determine the effect of cement material, curing mode and surface treatment (a = 0.05). RESULTS: Overall, cement material (p = 0.031), curing mode (p = 0.001), and surface treatment (p < 0.001) significantly affected relative cell viability of HGF. The autopolymerized specimen with the oxygen inhibition layer left intact displayed the lowest relative cell viability (MLA 25.7%, RUN 46.6%). Removal of the oxygen inhibition layer with a scaler increased cell viability but also resulted in higher surface roughness values. CONCLUSIONS: HGF cell viability is affected by the surface treatment and the curing mode. The oxygen inhibition layer is an inhibitory factor for the viability of HGF cells. Autopolymerization enhances the cytotoxic potential of the oxygen inhibition layer.


Assuntos
Colagem Dentária , Cimentos de Resina , Resinas Compostas/farmacologia , Cimentos Dentários , Materiais Dentários , Fibroblastos , Humanos , Teste de Materiais/métodos , Oxigênio , Cimentos de Resina/farmacologia , Propriedades de Superfície
13.
Materials (Basel) ; 15(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629659

RESUMO

BACKGROUND: The objective was to determine the optimal connector size and position within zirconia disks for implant-supported cantilever fixed dental prostheses (ICFDP). METHODS: Two-unit ICFDPs (n = 60) were designed for the premolar region with connector sizes of either 9 or 12 mm2 and positioned in the enamel or dentin layer of two different types of zirconia disks. The restorations were milled and cemented onto zirconia implants. After simulated chewing for 1.2 Mio cycles, the fracture load was measured and fractures were analyzed. RESULTS: No fractures of ICFDPs or along the implants were detected after simulated aging. The mean fracture load values were significantly higher for a connector size of 9 mm2 (951 N) compared with 12 mm2 (638 N). For the zirconia material with a higher biaxial flexural strength, the fracture load values were increased from 751 to 838 N, but more implant fractures occurred. The position within the zirconia disk did not influence the fracture load. CONCLUSIONS: A connector size of 9 mm2 and a zirconia material with a lower strength should be considered when designing ICFDPS on zirconia implants to reduce the risk of fractures along the intraosseous implant portion.

14.
Materials (Basel) ; 15(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629692

RESUMO

BACKGROUND: The purpose of this review was to analyze and correlate the findings for zirconia implants in clinical, preclinical and in vitro cell studies in relation to surface structure. METHODS: Electronic searches were conducted to identify clinical, preclinical and in vitro cell studies on zirconia implant surfaces. The primary outcomes were mean bone loss (MBL) for clinical studies, bone-to-implant contact (BIC) and removal torque (RT) for preclinical studies and cell spreading, cell proliferation and gene expression for cell studies. The secondary outcomes included comparisons of data found for those surfaces that were investigated in all three study types. RESULTS: From 986 screened titles, 40 studies were included for data extraction. In clinical studies, only micro-structured surfaces were investigated. The lowest MBL was reported for sandblasted and subsequently etched surfaces, followed by a sinter and slurry treatment and sandblasted surfaces. For BIC, no clear preference of one surface structure was observable, while RT was slightly higher for micro-structured than smooth surfaces. All cell studies showed that cell spreading and cytoskeletal formation were enhanced on smooth compared with micro-structured surfaces. CONCLUSIONS: No correlation was observed for the effect of surface structure of zirconia implants within the results of clinical, preclinical and in vitro cell studies, underlining the need for standardized procedures for human, animal and in vitro studies.

15.
J Esthet Restor Dent ; 34(5): 833-842, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35305288

RESUMO

OBJECTIVE: The purpose of this study is to compare the bonding performance and mechanical properties of two different resin composite cements using simplified adhesive bonding strategies. MATERIALS AND METHODS: Shear bond strength of two resin composite cements (an adhesive cement: Panavia V5 [PV5] and a self-adhesive cement: RelyX Universal [RUV]) to human enamel, dentin, and a variety of restorative materials (microfilled composite, composite, polymer-infiltrated ceramic, feldspar ceramic, lithium disilicate and zirconia) was measured. Thermocycle aging was performed with selected material combinations. RESULTS: For both cements, the highest shear bond strength to dentin was achieved when using a primer (PV5: 18.0 ± 4.2 MPa, RUV: 18.2 ± 3.3 MPa). Additional etching of dentin reduced bond strength for RUV (12.5 ± 4.9 MPa). On enamel, PV5 achieved the highest bond strength when the primer was used (18.0 ± 3.1 MPa), while for RUV etching of enamel and priming provided best results (21.2 ± 6.6 MPa). Shear bond strength of RUV to restorative materials was superior to PV5. Bonding to resin-based materials was predominantly observed for RUV. CONCLUSIONS: While use of RUV with the selective-etch technique is slightly more labor intensive than PV5, RUV (with its universal primer) displayed a high-bonding potential to all tested restorative materials, especially to resin. CLINICAL SIGNIFICANCE: For a strong adhesion to the tooth substrate, PV5 (with its tooth primer) is to be preferred because etching with phosphoric acid is not required. However, when using a wide range of varying restorative materials, RUV with its universal primer seems to be an adequate option.


Assuntos
Colagem Dentária , Cerâmica , Colagem Dentária/métodos , Cimentos Dentários , Materiais Dentários , Análise do Estresse Dentário , Humanos , Teste de Materiais , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície
16.
Clin Oral Implants Res ; 33(4): 424-432, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35137461

RESUMO

OBJECTIVES: To determine whether the surface treatment of zirconia affects biofilm formation in an in vitro three-species biofilm model and in situ. MATERIAL AND METHODS: Zirconia surfaces considered for the transmucosal portion of a zirconia implant were compared with polished pure titanium grade 4 (Tp). Disks 13 mm in diameter of either polished (Zp), polished and heat-treated (Zpt), machined (Zm), machined and heat-treated (Zmt) and sandblasted, etched and heat-treated (Z14) zirconia were fabricated. Surface roughness and wettability of specimens was measured. Biofilm formation was evaluated by safranin staining and scanning electron microscopy (SEM) using a three-species model, and intraorally with 16 volunteers carrying oral splints in two independent experiments. Relative biofilm formation was compared with Kruskal-Wallis followed by Bonferroni post hoc test (α = 0.05). RESULTS: In vitro biofilm formation with optical density values on Zp (0.14 ± 0.01), Zpt (0.14 ± 0.02), Zm (0.13 ± 0.01) and Zmt (0.13 ± 0.01) was significantly lower than on Tp (0.21 ± 0.05) and Z14 (0.20 ± 0.04) (p < .05). In situ biofilm formation was significantly higher on Z14 (0.56 ± 0.45) (p < .05), while no significant differences in optical density were observed among Zp (0.25 ± 0.20), Zm (0.36 ± 0.34) and Tp (0.28 ± 0.22). SEM analysis supported quantitative findings. CONCLUSIONS: In the in vitro, three-species biofilm model differences in material and surface roughness affected biofilm formation. In situ biofilm formation was mainly affected by the surface roughness of the specimens. Polishing of zirconia is recommended to reduce biofilm formation, while heat treatment has no significant effect.


Assuntos
Implantes Dentários , Biofilmes , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio , Zircônio
17.
Polymers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215595

RESUMO

The most common three-dimensional (3D) printing method is material extrusion, where a pre-made filament is deposited layer-by-layer. In recent years, low-cost polycaprolactone (PCL) material has increasingly been used in 3D printing, exhibiting a sufficiently high quality for consideration in cranio-maxillofacial reconstructions. To increase osteoconductivity, prefabricated filaments for bone repair based on PCL can be supplemented with hydroxyapatite (HA). However, few reports on PCL/HA composite filaments for material extrusion applications have been documented. In this study, solvent-free fabrication for PCL/HA composite filaments (HA 0%, 5%, 10%, 15%, 20%, and 25% weight/weight PCL) was addressed, and parameters for scaffold fabrication in a desktop 3D printer were confirmed. Filaments and scaffold fabrication temperatures rose with increased HA content. The pore size and porosity of the six groups' scaffolds were similar to each other, and all had highly interconnected structures. Six groups' scaffolds were evaluated by measuring the compressive strength, elastic modulus, water contact angle, and morphology. A higher amount of HA increased surface roughness and hydrophilicity compared to PCL scaffolds. The increase in HA content improved the compressive strength and elastic modulus. The obtained data provide the basis for the biological evaluation and future clinical applications of PCL/HA material.

18.
J Appl Microbiol ; 132(2): 1018-1024, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34480822

RESUMO

AIMS: In the context of minor orthodontic intervention using clear aligner technologies, we determined antimicrobial properties of a cellulose-based material loaded with essential oils such as cinnamaldehyde. METHODS AND RESULTS: Isothermal microcalorimetry was used to assess the growth of bacterial biofilms at the interface between the tested material and the solid growth medium. The calorimetric data were analyzed using conventional growth models (Gompertz and Richards), and inhibition at 12 and 24 h was calculated. CONCLUSIONS: The tested material showed antimicrobial properties against Staphylococcus epidermidis as well as Streptococcus mutans and Streptococcus mitis clinical isolates. The inhibition was more pronounced against S. epidermidis, for which growth rate was reduced by 70% and lag phase was extended by 12 h. For S. mutans and S. mitis, the decrease in growth rate was 20% and 10%, and the lag phase increased by 2 and 6 h, respectively. SIGNIFICANCE AND IMPACT: Clear aligners for minor teeth alignment are becoming very popular. As they must be worn for at least 22 h per day for up to 40 weeks, it is important that they remain clean and do not promote caries formation or other oral infections. Therefore, introducing material with antimicrobial properties is expected to maintain oral hygiene during the aligner therapy. Here, we demonstrate the use of cinnamaldehyde for reducing microbial growth and biofilm formation on cellulose-based dental clear aligners.


Assuntos
Anti-Infecciosos , Cárie Dentária , Acroleína/análogos & derivados , Anti-Infecciosos/farmacologia , Biofilmes , Celulose , Humanos , Streptococcus mutans
19.
Materials (Basel) ; 14(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34442883

RESUMO

The objective of this study was to evaluate the fracture load and retention force of different bonding systems while restoring one-piece zirconia implants with a novel cementation approach using a mesostructure. Polymer-infiltrated ceramic mesostructures (n = 112) were therefore designed as caps on the implant abutment, and a molar feldspathic ceramic crown was constructed on top of it as a suprastructure. For cementation, different bonding systems were used. Fracture load and retention force were measured immediately after storage in water at 37 °C for 24 h (n = 8) as well as after artificial aging in a chewing simulator and subsequent thermal cycling (n = 8). Combined restorations showed higher fracture load compared to monolithic restorations of polymer-infiltrated ceramic (n = 8) or feldspathic ceramic (n = 8) identical in shape. However, the fracture load of the combined restorations was significantly affected by aging, independent of the primers and cements used. Restorations cemented with primers containing methyl methacrylate and 10-methacryloyloxydecyl dihydrogen phosphate exhibited the highest retention force values. Aging did not affect the retention force significantly. Similar fracture load values can be expected from combination restorations when compared with monolithic crowns.

20.
Clin Implant Dent Relat Res ; 23(4): 593-599, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34047019

RESUMO

BACKGROUND: Although 5-year clinical data exist for different zirconia implants, no analysis has yet been performed focusing on how the surface topography of the implant affects clinical parameters. PURPOSE: To analyze the influence of zirconia implant topography on first bone implant contact (fBIC). MATERIALS AND METHODS: In a prospective two-center cohort investigation 63 zirconia implants were evaluated at implant placement, prosthetic delivery, 1, 3, and 5 years. The distance (DIB) between implant shoulder and fBIC was measured at each time point in periapical radiographs at mesial and distal sites. Two-way ANOVA/Bonferroni was used to analyze the effects of time and center (α < 0.05). RESULTS: Between the centers, the mean DIB varied significantly at implant placement (Freiburg [FR]: 1.4 ± 0.6 mm; Zurich [ZH]: 0.8 ± 0.5 mm). Thereafter, no statistically significant difference in DIB was observed, neither between centers nor between time points (prosthetic delivery: FR: 1.9 ± 0.6 mm, ZH: 1.7 ± 0.8 mm; 1 year: FR: 1.8 ± 0.6 mm, ZH: 1.6 ± 0.8 mm; 3 years: FR: 1.9 ± 0.8 mm, ZH: 1.7 ± 0.8 mm; 5 years: FR: 1.9 ± 0.8 mm, ZH 1.8 ± 0.6 mm). The overall mean DIB at prosthetic delivery to 5 years of both centers (1.8 ± 0.7 mm) is located within the transition zone between the smooth neck and the moderately rough intraosseous part (1.6-2.0 mm from the implant shoulder). However, individual DIB values are ranging from 0.1 to 4.2 mm overlapping the transition zone. CONCLUSIONS: The standard deviation of the DIB indicates that the fBIC establishes on moderately rough and smooth surfaces. Consequently, soft tissue adapts to both topographies as well.


Assuntos
Implantes Dentários , Planejamento de Prótese Dentária , Implantação Dentária Endóssea , Humanos , Estudos Prospectivos , Propriedades de Superfície , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...