Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659764

RESUMO

Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with varying chromosome duplications, in wild-type cells and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1. We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation; in contrast, duplication of other translational regulators, including eI5Fa Hyp2, benefit ssd1Δ aneuploids over controls. Using modeling of aneuploid growth defects, we propose that the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. Our results suggest that the mechanism behind their toxicity is linked to a key vulnerability in translation in aneuploid cells. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.

2.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645209

RESUMO

Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.

3.
EMBO J ; 42(20): e114288, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37728253

RESUMO

Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Meiose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Anáfase , Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
EMBO J ; 41(4): e109446, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023198

RESUMO

Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane-nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the γ-tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo-like kinase Cdc5 and the meiosis-specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphase-promoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking-activation mechanism ensures that only single-copy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II-specific processes.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/fisiologia , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/metabolismo , Meiose/fisiologia , Metáfase/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/citologia , Fatores de Transcrição/metabolismo
5.
EMBO J ; 40(7): e106812, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33644894

RESUMO

Genome haploidization involves sequential loss of cohesin from chromosome arms and centromeres during two meiotic divisions. At centromeres, cohesin's Rec8 subunit is protected from separase cleavage at meiosis I and then deprotected to allow its cleavage at meiosis II. Protection of centromeric cohesin by shugoshin-PP2A seems evolutionarily conserved. However, deprotection has been proposed to rely on spindle forces separating the Rec8 protector from cohesin at metaphase II in mammalian oocytes and on APC/C-dependent destruction of the protector at anaphase II in yeast. Here, we have activated APC/C in the absence of sister kinetochore biorientation at meiosis II in yeast and mouse oocytes, and find that bipolar spindle forces are dispensable for sister centromere separation in both systems. Furthermore, we show that at least in yeast, protection of Rec8 by shugoshin and inhibition of separase by securin are both required for the stability of centromeric cohesin at metaphase II. Our data imply that related mechanisms preserve the integrity of dyad chromosomes during the short metaphase II of yeast and the prolonged metaphase II arrest of mammalian oocytes.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Meiose , Animais , Células Cultivadas , Feminino , Camundongos , Oócitos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
6.
Biomedica ; 40(Supl. 1): 37-44, 2020 05 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-32463607

RESUMO

Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a microorganism that colonizes nostrils and different parts of the body, which is considered a risk factor to acquire invasive infections, especially in cardiovascular surgery patients. Objective: To determine the frequency of nasal colonization by MRSA and to establish the clinical characteristics in patients scheduled for cardiovascular surgery. Materials and methods: This was a descriptive study conducted between February and December, 2015. We included adult patients scheduled for cardiovascular surgery at the Hospital Universitario San Ignacio in Bogotá, Colombia. Colonization was identified by real-time PCR from nasal swabs. Colonized patients were treated with mupirocin 2.0% intranasally twice a day and bathed with chlorhexidine 4% from the neck downwards for five days. At the end of this treatment, PCR control was carried out. Results: We included 141 patients with a percentage of nasal colonization of 13.4% (19/141). There were 52 hospitalized patients and 89 outpatients with a percentage of nasal colonization of 17.3% (9/52), and 11.2% (10/89), respectively. All colonized patients who received treatment had a negative PCR at the end of the regime and none of the participating patients had a surgical site infection by S. aureus at the end of the study. Conclusions: Nasal colonization was observed both in hospitalized patients and outpatients. Decolonization treatment with mupirocin was effective to eradicate the carrier state in the short term, which could impact the rates of surgical wound infection associated with cardiovascular surgery.


Introducción. Staphylococcus aureus resistente a la meticilina (SARM) es un microorganismo que coloniza las fosas nasales y diferentes partes del cuerpo, lo cual se considera un factor de riesgo para adquirir infecciones invasivas, especialmente en pacientes sometidos a cirugía cardiovascular. Objetivo. Determinar la colonización nasal por SARM y establecer las características clínicas en pacientes programados para cirugía cardiovascular. Materiales y métodos. Se hizo un estudio descriptivo entre febrero y diciembre de 2015. Se incluyeron pacientes adultos programados para cirugía cardiovascular en el Hospital Universitario San Ignacio de Bogotá. La colonización se identificó mediante reacción en cadena de la polimerasa (Polymerase Chain Reaction, PCR) en tiempo real en muestras obtenidas mediante hisopados nasales. Los pacientes fueron descolonizados con mupirocina al 2,0 % intranasal dos veces al día y baños con gluconato de clorhexidina al 4 % del cuello hacía abajo durante cinco días, al cabo de lo cual se hizo una PCR de control. Resultados. Se incluyeron 141 pacientes, 52 hospitalizados y 89 ambulatorios. Del total, 19 (13,4 %) tenían colonización nasal por SARM, correspondientes a 9 (17,3 %) de los 52 hospitalizados y 10 (11,2 %) de los 89 ambulatorios. Todos los pacientes sometidos a descolonización tuvieron resultado negativo en la PCR al final del proceso y ninguno presentó infección del sitio operatorio por S. aureus. Conclusiones. Se demostró colonización nasal por SARM tanto en los pacientes hospitalizados como en los ambulatorios. La descolonización con mupirocina fue efectiva para erradicar el estado de portador a corto plazo, lo que podría tener efecto en las tasas de infección del sitio operatorio en las cirugías cardiovasculares.


Assuntos
Procedimentos Cirúrgicos Cardiovasculares , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Nariz/microbiologia , Idoso , Colômbia , Feminino , Hospitais Universitários , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/microbiologia , Complicações Pós-Operatórias/prevenção & controle , Período Pré-Operatório , Infecções Estafilocócicas/prevenção & controle
7.
Biomédica (Bogotá) ; 40(supl.1): 37-44, mayo 2020. tab
Artigo em Espanhol | LILACS | ID: biblio-1124242

RESUMO

Introducción. Staphylococcus aureus resistente a la meticilina (SARM) es un microorganismo que coloniza las fosas nasales y diferentes partes del cuerpo, lo cual se considera un factor de riesgo para adquirir infecciones invasivas, especialmente en pacientes sometidos a cirugía cardiovascular. Objetivo. Determinar la colonización nasal por SARM y establecer las características clínicas en pacientes programados para cirugía cardiovascular. Materiales y métodos. Se hizo un estudio descriptivo entre febrero y diciembre de 2015. Se incluyeron pacientes adultos programados para cirugía cardiovascular en el Hospital Universitario San Ignacio de Bogotá. La colonización se identificó mediante reacción en cadena de la polimerasa (Polymerase Chain Reaction, PCR) en tiempo real en muestras obtenidas mediante hisopados nasales. Los pacientes fueron descolonizados con mupirocina al 2,0 % intranasal dos veces al día y baños con gluconato de clorhexidina al 4 % del cuello hacía abajo durante cinco días, al cabo de lo cual se hizo una PCR de control. Resultados.Se incluyeron 141 pacientes, 52 hospitalizados y 89 ambulatorios. Del total, 19 (13,4 %) tenían colonización nasal por SARM, correspondientes a 9 (17,3 %) de los 52 hospitalizados y 10 (11,2 %) de los 89 ambulatorios. Todos los pacientes sometidos a descolonización tuvieron resultado negativo en la PCR al final del proceso y ninguno presentó infección del sitio operatorio por S. aureus. Conclusiones.Se demostró colonización nasal por SARM tanto en los pacientes hospitalizados como en los ambulatorios. La descolonización con mupirocina fue efectiva para erradicar el estado de portador a corto plazo, lo que podría tener efecto en las tasas de infección del sitio operatorio en las cirugías cardiovasculares.


Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a microorganism that colonizes nostrils and different parts of the body, which is considered a risk factor to acquire invasive infections, especially in cardiovascular surgery patients. Objective: To determine the frequency of nasal colonization by MRSA and to establish the clinical characteristics in patients scheduled for cardiovascular surgery. Materials and methods: This was a descriptive study conducted between February and December, 2015. We included adult patients scheduled for cardiovascular surgery at the Hospital Universitario San Ignacio in Bogotá, Colombia. Colonization was identified by real-time PCR from nasal swabs. Colonized patients were treated with mupirocin 2.0% intranasally twice a day and bathed with chlorhexidine 4% from the neck downwards for five days. At the end of this treatment, PCR control was carried out. Results: We included 141 patients with a percentage of nasal colonization of 13.4% (19/141). There were 52 hospitalized patients and 89 outpatients with a percentage of nasal colonization of 17.3% (9/52), and 11.2% (10/89), respectively. All colonized patients who received treatment had a negative PCR at the end of the regime and none of the participating patients had a surgical site infection by S. aureus at the end of the study. Conclusions: Nasal colonization was observed both in hospitalized patients and outpatients. Decolonization treatment with mupirocin was effective to eradicate the carrier state in the short term, which could impact the rates of surgical wound infection associated with cardiovascular surgery.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecção da Ferida Cirúrgica , Portador Sadio , Mupirocina , Mucosa Nasal
8.
Elife ; 82019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112132

RESUMO

Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.


Assuntos
Cinetocoros/química , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/análise , Saccharomycetales/química , Ligação Proteica
9.
Cell Cycle ; 16(12): 1145-1152, 2017 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28514186

RESUMO

Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.


Assuntos
Proteínas Cdc20/fisiologia , Centrômero/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Animais , Proteínas de Ciclo Celular/fisiologia , Centrômero/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Humanos , Meiose , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Separase/fisiologia
10.
Dev Cell ; 40(1): 37-52, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28017619

RESUMO

Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis.


Assuntos
Caseína Quinase I/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Gametogênese , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Anáfase , Núcleo Celular/metabolismo , Centrômero/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteólise , Separase/metabolismo , Fuso Acromático/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...