Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(20): 14211-24, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24668815

RESUMO

The concept of "biased agonism" arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. "efficacy") can differ across the multiple signal transduction pathways (e.g. G protein and ß-arrestin (ßarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-ßarr2 fusion proteins with their respective molecular efficacies for activating Gq and ßarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and ßarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR.


Assuntos
Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Regulação Alostérica , Células HEK293 , Humanos , Ligantes , Proteínas Recombinantes de Fusão/metabolismo , Termodinâmica
2.
Beilstein J Org Chem ; 9: 1383-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946832

RESUMO

(R)-3 (NPS 2143) is a negative allosteric modulator of the human calcium-sensing receptor (CaSR) and as such represents an important pharmacological tool compound for studying the CaSR. Herein, we disclose for the first time a complete experimental description, detailed characterisation and assessment of enantiomeric purity for (R)-3. An efficient, reproducible and scalable synthesis of (R)-3 that requires a minimum of chromatographic purification steps is presented. (R)-3 was obtained in excellent optical purity (er > 99:1) as demonstrated by chiral HPLC and the pharmacological profile for (R)-3 is in full accordance with that reported in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...