Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6593): 630-635, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511982

RESUMO

Epistasis can markedly affect evolutionary trajectories. In recent decades, protein-level fitness landscapes have revealed extensive idiosyncratic epistasis among specific mutations. By contrast, other work has found ubiquitous and apparently nonspecific patterns of global diminishing-returns and increasing-costs epistasis among mutations across the genome. Here, we used a hierarchical CRISPR gene drive system to construct all combinations of 10 missense mutations from across the genome in budding yeast and measured their fitness in six environments. We show that the resulting fitness landscapes exhibit global fitness-correlated trends but that these trends emerge from specific idiosyncratic interactions. We thus provide experimental validation of recent theoretical work arguing that fitness-correlated trends can emerge as the generic consequence of idiosyncratic epistasis.


Assuntos
Evolução Biológica , Epistasia Genética , Aptidão Genética , Modelos Genéticos , Mutação
2.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33885815

RESUMO

Understanding the evolution of novel physiological traits is highly relevant for expanding the characterization and manipulation of biological systems. Acquisition of new traits can be achieved through horizontal gene transfer (HGT). Here, we investigate drivers that promote or deter the maintenance of HGT-driven degeneracy, occurring when processes accomplish identical functions through nonidentical components. Subsequent evolution can optimize newly acquired functions; for example, beneficial alleles identified in an engineered Methylorubrum extorquens strain allowed it to utilize a "Foreign" formaldehyde oxidation pathway substituted for its Native pathway for methylotrophic growth. We examined the fitness consequences of interactions between these alleles when they were combined with the Native pathway or both (Dual) pathways. Unlike the Foreign pathway context where they evolved, these alleles were often neutral or deleterious when moved into these alternative genetic backgrounds. However, there were instances where combinations of multiple alleles resulted in higher fitness outcomes than individual allelic substitutions could provide. Importantly, the genetic context accompanying these allelic substitutions significantly altered the fitness landscape, shifting local fitness peaks and restricting the set of accessible evolutionary trajectories. These findings highlight how genetic context can negatively impact the probability of maintaining native and HGT-introduced functions together, making it difficult for degeneracy to evolve. However, in cases where the cost of maintaining degeneracy was mitigated by adding evolved alleles impacting the function of these pathways, we observed rare opportunities for pathway coevolution to occur. Together, our results highlight the importance of genetic context and resulting epistasis in retaining or losing HGT-acquired degenerate functions.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Redes e Vias Metabólicas/genética , Epistasia Genética , Glutationa/metabolismo , Methylobacteriaceae , Plasmídeos
3.
Nature ; 575(7783): 494-499, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723263

RESUMO

In rapidly adapting asexual populations, including many microbial pathogens and viruses, numerous mutant lineages often compete for dominance within the population1-5. These complex evolutionary dynamics determine the outcomes of adaptation, but have been difficult to observe directly. Previous studies have used whole-genome sequencing to follow molecular adaptation6-10; however, these methods have limited resolution in microbial populations. Here we introduce a renewable barcoding system to observe evolutionary dynamics at high resolution in laboratory budding yeast. We find nested patterns of interference and hitchhiking even at low frequencies. These events are driven by the continuous appearance of new mutations that modify the fates of existing lineages before they reach substantial frequencies. We observe how the distribution of fitness within the population changes over time, and find a travelling wave of adaptation that has been predicted by theory11-17. We show that clonal competition creates a dynamical 'rich-get-richer' effect: fitness advantages that are acquired early in evolution drive clonal expansions, which increase the chances of acquiring future mutations. However, less-fit lineages also routinely leapfrog over strains of higher fitness. Our results demonstrate that this combination of factors, which is not accounted for in existing models of evolutionary dynamics, is critical in determining the rate, predictability and molecular basis of adaptation.


Assuntos
Adaptação Fisiológica/genética , Linhagem da Célula , Evolução Molecular , Laboratórios , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Células Clonais/citologia , Células Clonais/metabolismo , Código de Barras de DNA Taxonômico , Aptidão Genética/genética
4.
PLoS Genet ; 15(2): e1007958, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30768593

RESUMO

Screens for epistatic interactions have long been used to characterize functional relationships corresponding to protein complexes, metabolic pathways, and other functional modules. Although epistasis between adaptive mutations is also common in laboratory evolution experiments, the functional basis for these interactions is less well characterized. Here, we quantify the extent to which gene function (as determined by a genome-wide screen for epistasis among deletion mutants) influences the rate and genetic basis of compensatory adaptation in a set of 37 gene deletion mutants nested within 16 functional modules. We find that functional module has predictive power: mutants with deletions in the same module tend to adapt more similarly, on average, than those with deletions in different modules. At the same time, initial fitness also plays a role: independent of the specific functional modules involved, adaptive mutations tend to be systematically more beneficial in less-fit genetic backgrounds, consistent with a general pattern of diminishing returns epistasis. We measured epistatic interactions between initial gene deletion mutations and the mutations that accumulate during compensatory adaptation and found a general trend towards positive epistasis (i.e. mutations tend to be more beneficial in the background in which they arose). In two functional modules, epistatic interactions between the initial gene deletions and the mutations in their descendant lines caused evolutionary entrenchment, indicating an intimate functional relationship. Our results suggest that genotypes with similar epistatic interactions with gene deletion mutations will also have similar epistatic interactions with adaptive mutations, meaning that genome scale maps of epistasis between gene deletion mutations can be predictive of evolutionary dynamics.


Assuntos
Epistasia Genética , Evolução Molecular , Deleção de Genes , Adaptação Fisiológica/genética , Simulação por Computador , Genes Fúngicos , Aptidão Genética , Redes e Vias Metabólicas/genética , Modelos Genéticos , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
J Lab Autom ; 18(2): 171-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23032169

RESUMO

Software to manage automated laboratories, when interfaced with hardware instruments, gives users a way to specify experimental protocols and schedule activities to avoid hardware conflicts. In addition to these basics, modern laboratories need software that can run multiple different protocols in parallel and that can be easily extended to interface with a constantly growing diversity of techniques and instruments. We present Clarity, a laboratory automation manager that is hardware agnostic, portable, extensible, and open source. Clarity provides critical features including remote monitoring, robust error reporting by phone or email, and full state recovery in the event of a system crash. We discuss the basic organization of Clarity, demonstrate an example of its implementation for the automated analysis of bacterial growth, and describe how the program can be extended to manage new hardware. Clarity is mature, well documented, actively developed, written in C# for the Common Language Infrastructure, and is free and open-source software. These advantages set Clarity apart from currently available laboratory automation programs. The source code and documentation for Clarity is available at http://code.google.com/p/osla/.


Assuntos
Automação Laboratorial/instrumentação , Robótica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...