RESUMO
Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.
Assuntos
Carbamatos , Imidazóis , Trichomonas vaginalis , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/crescimento & desenvolvimento , Imidazóis/farmacologia , Imidazóis/química , Humanos , Carbamatos/farmacologia , Carbamatos/química , Metronidazol/farmacologia , Metronidazol/química , Regulação da Expressão Gênica/efeitos dos fármacos , Trofozoítos/efeitos dos fármacosRESUMO
Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.
RESUMO
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.