Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1195840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027526

RESUMO

Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-ß signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.

2.
Viruses ; 15(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631989

RESUMO

Whether RNA-RNA interactions of cytoplasmic RNA viruses, such as Betacoronavirus, might end in the biogenesis of putative virus-derived small RNAs as miRNA-like molecules has been controversial. Even more, whether RNA-RNA interactions of wild animal viruses may act as virus-derived small RNAs is unknown. Here, we address these issues in four ways. First, we use conserved RNA structures undergoing negative selection in the genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 circulating in different bat species, intermediate animals, and human hosts. Second, a systematic literature review was conducted to identify Betacoronavirus-targeting hsa-miRNAs involved in lung cell infection. Third, we employed sophisticated long-range RNA-RNA interactions to refine the seed sequence homology of hsa-miRNAs with conserved RNA structures. Fourth, we used high-throughput RNA sequencing of a Betacoronavirus-infected epithelial lung cancer cell line (Calu-3) to validate the results. We proposed nine potential virus-derived small RNAs: two vsRNAs in SARS-CoV (Bats: SB-vsRNA-ORF1a-3p; SB-vsRNA-S-5p), one vsRNA in MERS-CoV (Bats: MB-vsRNA-ORF1b-3p), and six vsRNAs in SARS-CoV-2 (Bats: S2B-vsRNA-ORF1a-5p; intermediate animals: S2I-vsRNA-ORF1a-5p; and humans: S2H-vsRNA-ORF1a-5p, S2H-vsRNA-ORF1a-3p, S2H-vsRNA-ORF1b-3p, S2H-vsRNA-ORF3a-3p), mainly encoded by nonstructural protein 3. Notably, Betacoronavirus-derived small RNAs targeted 74 differentially expressed genes in infected human cells, of which 55 upregulate the molecular mechanisms underlying acute respiratory distress syndrome (ARDS), and the 19 downregulated genes might be implicated in neurotrophin signaling impairment. These results reveal a novel small RNA-based regulatory mechanism involved in neuropathogenesis that must be further studied to validate its therapeutic use.


Assuntos
COVID-19 , Quirópteros , Neoplasias Pulmonares , MicroRNAs , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , SARS-CoV-2/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Linhagem Celular , Pulmão , Fatores de Crescimento Neural
3.
Mol Neurobiol ; 60(8): 4842-4854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37184765

RESUMO

Chronic intake of a high-fat diet increases saturated fatty acids in the brain causing the progression of neurodegenerative diseases. Palmitic acid is a free fatty acid abundant in the diet that at high concentrations may penetrate the blood-brain barrier and stimulate the production of pro-inflammatory cytokines, leading to inflammation in astrocytes. The use of the synthetic neurosteroid tibolone in protection against fatty acid toxicity is emerging, but its transcriptional effects on palmitic acid-induced lipotoxicity remain unclear. Herein, we performed a transcriptome profiling of normal human astrocytes to investigate the molecular mechanisms by which palmitic acid causes cellular damage to astrocytes, and whether tibolone could reverse its detrimental effects. Astrocytes undergo a profound transcriptional change at 2 mM palmitic acid, affecting the expression of 739 genes, 366 upregulated and 373 downregulated. However, tibolone at 10 nM does not entirely reverse palmitic acid effects. Additionally, the protein-protein interaction reveals two novel gene clustering modules. The first module involves astrocyte defense responses by upregulation of pathways associated with antiviral innate immunity, and the second is linked to lipid metabolism. Our data suggest that activation of viral response signaling pathways might be so far, the initial molecular mechanism of astrocytes in response to a lipotoxic insult by palmitic acid, triggered particularly upon increased expression levels of IFIT2, IRF1, and XAF1. Therefore, this novel approach using a global gene expression analysis may shed light on the pleiotropic effects of palmitic acid on astrocytes, and provide a basis for future studies addressed to elucidate these responses in neurodegenerative conditions, which is highly valuable for the design of therapeutic strategies.


Assuntos
Interferon Tipo I , Ácido Palmítico , Humanos , Ácido Palmítico/toxicidade , Antivirais/farmacologia , Astrócitos/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Ácidos Graxos/metabolismo , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA