Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 692: 3-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925185

RESUMO

In addition to A, C, G and U, RNA contains over 100 additional chemically distinct residues. An abundant modified base frequently found in tRNAs, dihydrouridine (D) has recently been mapped to over 100 positions in mRNAs in yeast and human cells. Multiple highly conserved dihydrouridine synthases associate with and modify mRNA, suggesting there are many D sites yet to be found. Because D alters RNA structure, installation of D in mRNA is likely to effect multiple steps in mRNA metabolism including processing, trafficking, translation, and degradation. Here, we introduce D-seq, a method to chart the D landscape at single nucleotide resolution. The included protocols start with RNA isolation and carry through D-seq library preparation and data analysis. While the protocols below are tailored to map Ds in mRNA, the D-seq method is generalizable to any RNA type of interest, including non-coding RNAs, which have also recently been identified as dihydrouridine synthase targets.


Assuntos
Genoma , RNA , Humanos , RNA/genética , RNA de Transferência/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
PLoS Biol ; 20(5): e3001622, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609439

RESUMO

Dihydrouridine is a modified nucleotide universally present in tRNAs, but the complete dihydrouridine landscape is unknown in any organism. We introduce dihydrouridine sequencing (D-seq) for transcriptome-wide mapping of D with single-nucleotide resolution and use it to uncover novel classes of dihydrouridine-containing RNA in yeast which include mRNA and small nucleolar RNA (snoRNA). The novel D sites are concentrated in conserved stem-loop regions consistent with a role for D in folding many functional RNA structures. We demonstrate dihydrouridine synthase (DUS)-dependent changes in splicing of a D-containing pre-mRNA in cells and show that D-modified mRNAs can be efficiently translated by eukaryotic ribosomes in vitro. This work establishes D as a new functional component of the mRNA epitranscriptome and paves the way for identifying the RNA targets of multiple DUS enzymes that are dysregulated in human disease.


Assuntos
RNA , Transcriptoma , Humanos , Nucleotídeos , RNA/química , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transcriptoma/genética
3.
Cell Syst ; 13(3): 256-264.e3, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35041803

RESUMO

Translational control shapes the proteome in normal and pathophysiological conditions. Current high-throughput approaches reveal large differences in mRNA-specific translation activity but cannot identify the causative mRNA features. We developed direct analysis of ribosome targeting (DART) and used it to dissect regulatory elements within 5' untranslated regions that confer 1,000-fold differences in ribosome recruitment in biochemically accessible cell lysates. Using DART, we determined a functional role for most alternative 5' UTR isoforms expressed in yeast, revealed a general mode of increased translation via direct binding to a core translation factor, and identified numerous translational control elements including C-rich silencers that are sufficient to repress translation both in vitro and in vivo. DART enables systematic assessment of the translational regulatory potential of 5' UTR variants, whether native or disease-associated, and will facilitate engineering of mRNAs for optimized protein production in various systems.


Assuntos
Biossíntese de Proteínas , Ribossomos , Regiões 5' não Traduzidas/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nat Med ; 25(12): 1873-1884, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31806906

RESUMO

Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA. We show that CRISPR/Cas9-introduced bi- and monoallelic SNORA31 deletions render human pluripotent stem cell (hPSC)-derived cortical neurons susceptible to HSV-1. Accordingly, SNORA31-mutated patient hPSC-derived cortical neurons are susceptible to HSV-1, like those from TLR3- or STAT1-deficient patients. Exogenous interferon (IFN)-ß renders SNORA31- and TLR3- but not STAT1-mutated neurons resistant to HSV-1. Finally, transcriptome analysis of SNORA31-mutated neurons revealed normal responses to TLR3 and IFN-α/ß stimulation but abnormal responses to HSV-1. Human SNORA31 thus controls central nervous system neuron-intrinsic immunity to HSV-1 by a distinctive mechanism.


Assuntos
Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/genética , Neurônios/imunologia , RNA Nucleolar Pequeno/genética , Adulto , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Pré-Escolar , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Feminino , Predisposição Genética para Doença , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade/genética , Lactente , Masculino , Metagenoma/genética , Metagenoma/imunologia , Pessoa de Meia-Idade , Neurônios/virologia , RNA Nucleolar Pequeno/imunologia
5.
PLoS Biol ; 16(9): e2005903, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208026

RESUMO

Ribosome-binding proteins function broadly in protein synthesis, gene regulation, and cellular homeostasis, but the complete complement of functional ribosome-bound proteins remains unknown. Using quantitative mass spectrometry, we identified late-annotated short open reading frame 2 (Lso2) as a ribosome-associated protein that is broadly conserved in eukaryotes. Genome-wide crosslinking and immunoprecipitation of Lso2 and its human ortholog coiled-coil domain containing 124 (CCDC124) recovered 25S ribosomal RNA in a region near the A site that overlaps the GTPase activation center. Consistent with this location, Lso2 also crosslinked to most tRNAs. Ribosome profiling of yeast lacking LSO2 (lso2Δ) revealed global translation defects during recovery from stationary phase with translation of most genes reduced more than 4-fold. Ribosomes accumulated at start codons, were depleted from stop codons, and showed codon-specific changes in occupancy in lso2Δ. These defects, and the conservation of the specific ribosome-binding activity of Lso2/CCDC124, indicate broadly important functions in translation and physiology.


Assuntos
Sequência Conservada , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Códon de Iniciação/genética , Regulação Fúngica da Expressão Gênica , Células HeLa , Humanos , Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
RNA ; 23(9): 1365-1375, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28546148

RESUMO

Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown. Here, we comprehensively determined the RNA-binding preferences of the eukaryotic initiation factor 4G (eIF4G) to assess whether this core translation initiation factor has intrinsic sequence preferences that may contribute to preferential translation of specific mRNAs. We identified a simple RNA sequence motif-oligo-uridine-that mediates high-affinity binding to eIF4G in vitro. Oligo(U) motifs occur naturally in the transcript leader (TL) of hundreds of yeast genes, and mRNAs with unstructured oligo(U) motifs were enriched in immunoprecipitations against eIF4G. Ribosome profiling following depletion of eIF4G in vivo showed preferentially reduced translation of mRNAs with long TLs, including those that contain oligo(U). Finally, TL oligo(U) elements are enriched in genes with regulatory roles and are conserved between yeast species, consistent with an important cellular function. Taken together, our results demonstrate RNA sequence preferences for a general initiation factor, which cells potentially exploit for translational control of specific mRNAs.


Assuntos
Sítios de Ligação , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação Fúngica da Expressão Gênica , Motivos de Nucleotídeos , Poli U/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequência Conservada , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Sci Transl Med ; 8(351): 351ra107, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27510903

RESUMO

Chronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients. The mutations segregated with short telomere length, low telomerase RNA levels, and extrapulmonary manifestations including myelodysplastic syndrome and liver disease. A truncated NAF1 was detected in cells derived from patients, and, in cells in which the frameshift mutation was introduced by genome editing, telomerase RNA levels were reduced. The mutant NAF1 lacked a conserved carboxyl-terminal motif, which we show is required for nuclear localization. To understand the disease mechanism, we used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) to generate Naf1(+/-) mice and found that they had half the levels of telomerase RNA. Other box H/ACA RNA levels were also decreased, but rRNA pseudouridylation, which is guided by snoRNAs, was intact. Moreover, first-generation Naf1(+/-) mice showed no evidence of ribosomal pathology. Our data indicate that disease in NAF1 mutation carriers is telomere-mediated; they show that NAF1 haploinsufficiency selectively disturbs telomere length homeostasis by decreasing the levels of telomerase RNA while sparing rRNA pseudouridylation.


Assuntos
Enfisema/genética , Fibrose Pulmonar/genética , RNA/genética , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteínas do Tecido Nervoso/genética , Ribonucleoproteínas/genética , Telomerase/genética , Telômero/genética
8.
Elife ; 52016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117520

RESUMO

Translation is a core cellular process carried out by a highly conserved macromolecular machine, the ribosome. There has been remarkable evolutionary adaptation of this machine through the addition of eukaryote-specific ribosomal proteins whose individual effects on ribosome function are largely unknown. Here we show that eukaryote-specific Asc1/RACK1 is required for efficient translation of mRNAs with short open reading frames that show greater than average translational efficiency in diverse eukaryotes. ASC1 mutants in S. cerevisiae display compromised translation of specific functional groups, including cytoplasmic and mitochondrial ribosomal proteins, and display cellular phenotypes consistent with their gene-specific translation defects. Asc1-sensitive mRNAs are preferentially associated with the translational 'closed loop' complex comprised of eIF4E, eIF4G, and Pab1, and depletion of eIF4G mimics the translational defects of ASC1 mutants. Together our results reveal a role for Asc1/RACK1 in a length-dependent initiation mechanism optimized for efficient translation of genes with important housekeeping functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao GTP/genética , Deleção de Genes , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Curr Protoc Mol Biol ; 112: 4.25.1-4.25.24, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26423590

RESUMO

A diverse array of post-transcriptional modifications is found in RNA molecules from all domains of life. While the locations of RNA modifications are well characterized in abundant noncoding RNAs, modified sites in less abundant mRNAs are just beginning to be discovered. Recent work has revealed hundreds of previously unknown and dynamically regulated pseudouridines (Ψ) in mRNAs from diverse organisms. This unit describes Pseudo-seq, an efficient, high-resolution method for identification of Ψs genome-wide. This unit includes methods for isolation of RNA from S. cerevisiae, preparation of Pseudo-seq libraries from RNA samples, and identification of sites of pseudouridylation from the sequencing data. Pseudo-seq is applicable to any organism or cell type, facilitating rapid identification of novel pseudouridylation events.


Assuntos
Pseudouridina/análise , RNA Mensageiro/química , RNA Mensageiro/genética , Transcriptoma , RNA Mensageiro/isolamento & purificação , Saccharomyces cerevisiae/genética
10.
Methods Enzymol ; 560: 219-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26253973

RESUMO

RNA molecules contain a variety of chemically diverse, posttranscriptionally modified bases. The most abundant modified base found in cellular RNAs, pseudouridine (Ψ), has recently been mapped to hundreds of sites in mRNAs, many of which are dynamically regulated. Though the pseudouridine landscape has been determined in only a few cell types and growth conditions, the enzymes responsible for mRNA pseudouridylation are universally conserved, suggesting many novel pseudouridylated sites remain to be discovered. Here, we present Pseudo-seq, a technique that allows the identification of sites of pseudouridylation genome-wide with single-nucleotide resolution. In this chapter, we provide a detailed description of Pseudo-seq. We include protocols for RNA isolation from Saccharomyces cerevisiae, Pseudo-seq library preparation, and data analysis, including descriptions of processing and mapping of sequencing reads, computational identification of sites of pseudouridylation, and assignment of sites to specific pseudouridine synthases. The approach presented here is readily adaptable to any cell or tissue type from which high-quality mRNA can be isolated. Identification of novel pseudouridylation sites is an important first step in elucidating the regulation and functions of these modifications.


Assuntos
Pseudouridina/isolamento & purificação , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Genoma Fúngico , Transferases Intramoleculares/genética , Pseudouridina/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae
11.
Nature ; 515(7525): 143-6, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25192136

RESUMO

Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.


Assuntos
Pseudouridina/análise , RNA Mensageiro/química , Saccharomyces cerevisiae/genética , Composição de Bases , Privação de Alimentos , Código Genético , Genoma/genética , Humanos , Transferases Intramoleculares/metabolismo , Pseudouridina/química , Pseudouridina/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/química , Saccharomyces cerevisiae/citologia , Análise de Sequência de RNA
12.
RNA ; 18(12): 2299-305, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23105001

RESUMO

mRNA levels do not accurately predict protein levels in eukaryotic cells. To investigate contributions of 5' untranslated regions (5' UTRs) to mRNA-specific differences in translation, we determined the 5' UTR boundaries of 96 yeast genes for which in vivo translational efficiency varied by 80-fold. A total of 25% of genes showed substantial 5' UTR heterogeneity. We compared the capacity of these genes' alternative 5' UTR isoforms for cap-dependent and cap-independent translation using quantitative in vitro and in vivo translation assays. Six out of nine genes showed mRNA isoform-specific translation activity differences of greater than threefold in at least one condition. For three genes, in vivo translation activities of alternative 5' UTR isoforms differed by more than 100-fold. These results show that changing genes' 5' UTR boundaries can produce large changes in protein output without changing the overall amount of mRNA. Because transcription start site (TSS) heterogeneity is common, we suggest that TSS choice is greatly under-appreciated as a quantitatively significant mechanism for regulating protein production.


Assuntos
Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição , Regiões 5' não Traduzidas , Sequência de Bases , Genes Fúngicos , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Sítios de Splice de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Riboswitch
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...