Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 627(8005): 783-788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538937

RESUMO

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

3.
Adv Mater ; 33(12): e2007047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33604960

RESUMO

Spintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers. Here, a new class of material architectures is introduced, excluding nonmagnetic 5d HMs, for high-performance spintronics operations. Very strong current-induced torques exerted on single ferrimagnetic GdFeCo layers, due to the combination of large SOC of the Gd 5d states and inversion symmetry breaking mainly engineered by interfaces, are demonstrated. These "self-torques" are enhanced around the magnetization compensation temperature and can be tuned by adjusting the spin absorption outside the GdFeCo layer. In other measurements, the very large emission of spin current from GdFeCo, 80% (20%) of spin anomalous Hall effect (spin Hall effect) symmetry is determined. This material platform opens new perspectives to exert "self-torques" on single magnetic layers as well as to generate spin currents from a magnetic layer.

4.
Adv Mater ; 31(35): e1901681, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282067

RESUMO

Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx (FeCo)1- x by the topological insulator [Bi2 Se3 and (BiSb)2 Te3 ] is investigated at room temperature. The switching current density of (BiSb)2 Te3 (1.20 × 105 A cm-2 ) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx (FeCo)1- x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices.

5.
Nano Lett ; 19(1): 90-99, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30472859

RESUMO

Due to the difficulty of growing high-quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was limited to lateral geometry devices. In this work, by using an ultrahigh-vacuum wafer-bonding technique, we have successfully fabricated metal-semiconductor-metal CoFeB/MgO/Si/Pt vertical structures. We hereby demonstrate pure spin-current injection and transport in the perpendicular current flow geometry over a distance larger than 2 µm in n-type Si at room temperature. In those experiments, a pure propagating spin current is generated via ferromagnetic resonance spin pumping and converted into a measurable voltage by using the inverse spin Hall effect occurring in the top Pt layer. A systematic study varying both Si and MgO thicknesses reveals the important role played by the localized states at the MgO-Si interface for the spin-current generation. Proximity effects involving indirect exchange interactions between the ferromagnet and the MgO-Si interface states appears to be a prerequisite to establishing the necessary out-of-equilibrium spin population in Si under the spin-pumping action.

6.
Nano Lett ; 18(11): 7362-7371, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30295499

RESUMO

Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate controlled generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature by a single ultrafast (35 fs) laser pulse. The skyrmion bubble density increases with the laser fluence, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...