Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 8(1): 016106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327714

RESUMO

Understanding and controlling of the evolution of sprouting vascular networks remains one of the basic challenges in tissue engineering. Previous studies on the vascularization dynamics have typically focused only on the phase of intense growth and often lacked spatial control over the initial cell arrangement. Here, we perform long-term day-by-day analysis of tens of isolated microvasculatures sprouting from endothelial cell-coated spherical beads embedded in an external fibrin gel. We systematically study the topological evolution of the sprouting networks over their whole lifespan, i.e., for at least 14 days. We develop a custom image analysis toolkit and quantify (i) the overall length and area of the sprouts, (ii) the distributions of segment lengths and branching angles, and (iii) the average number of branch generations-a measure of network complexity. We show that higher concentrations of vascular endothelial growth factor (VEGF) lead to earlier sprouting and more branched networks, yet without significantly affecting the speed of growth of individual sprouts. We find that the mean branching angle is weakly dependent on VEGF and typically in the range of 60°-75°, suggesting that, by comparison with the available diffusion-limited growth models, the bifurcating tips tend to follow local VEGF gradients. At high VEGF concentrations, we observe exponential distributions of segment lengths, which signify purely stochastic branching. Our results-due to their high statistical relevance-may serve as a benchmark for predictive models, while our new image analysis toolkit, offering unique features and high speed of operation, could be exploited in future angiogenic drug tests.

2.
Chem Rev ; 122(22): 16839-16909, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36108106

RESUMO

Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.


Assuntos
Microfluídica , Microgéis , Microfluídica/métodos , Hidrogéis/química , Engenharia Tecidual/métodos , Reprodutibilidade dos Testes
3.
Front Mol Neurosci ; 13: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587503

RESUMO

The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.

4.
PLoS Biol ; 17(5): e3000253, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042703

RESUMO

The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dendritos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Locomoção/fisiologia , Proteínas dos Microfilamentos/metabolismo , Angiomotinas , Animais , Hipocampo/citologia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Morfogênese , Atividade Motora , Fosforilação , Ligação Proteica , Células de Purkinje/metabolismo , Ratos Wistar , Proteína S6 Ribossômica/metabolismo , Proteínas de Sinalização YAP
5.
Eur J Cell Biol ; 93(10-12): 478-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25012928

RESUMO

Podosomes are adhesive, matrix remodeling organelles that have been described in numerous cell types, including all three vertebrate muscle cell lineages. Podosomes have been intensively studied in smooth muscle cells, but they have also been described in cardiac myocytes and skeletal muscle cells where they are proposed to play a role in developmental remodeling of neuromuscular junction postsynaptic machinery. In this review, we summarize the current state of knowledge of podosomes in muscle cells, with a focus on their potential function at the maturing synapse.


Assuntos
Extensões da Superfície Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miócitos de Músculo Liso/metabolismo , Junção Neuromuscular/metabolismo , Animais , Fusão Celular , Extensões da Superfície Celular/ultraestrutura , Humanos , Fibras Musculares Esqueléticas/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miócitos de Músculo Liso/ultraestrutura , Junção Neuromuscular/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...