Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 113: 289-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482203

RESUMO

It is becoming increasingly apparent that neuroinflammation plays a critical role in an array of neurological and psychiatric disorders. Recent studies have demonstrated the potential of diffusion MRI (dMRI) to characterize changes in microglial density and morphology associated with neuroinflammation, but these were conducted mostly ex vivo and/or in extreme, non-physiological animal models. Here, we build upon these studies by investigating the utility of well-established dMRI methods to detect neuroinflammation in vivo in a more clinically relevant animal model of sickness behavior. We show that diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) indicate widespread increases in diffusivity in the brains of rats given a systemic lipopolysaccharide challenge (n = 20) vs. vehicle-treated controls (n = 12). These diffusivity changes correlated with histologically measured changes in microglial morphology, confirming the sensitivity of dMRI to neuroinflammatory processes. This study marks a further step towards establishing a noninvasive indicator of neuroinflammation, which would greatly facilitate early diagnosis and treatment monitoring in various neurological and psychiatric diseases.


Assuntos
Imagem de Tensor de Difusão , Lipopolissacarídeos , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Schizophr Bull ; 49(3): 569-580, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573631

RESUMO

BACKGROUND AND HYPOTHESIS: Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN: Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS: Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS: These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.


Assuntos
Glutamina , Transtornos Psicóticos , Camundongos , Animais , Glutamina/metabolismo , Parvalbuminas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/metabolismo , Interneurônios/metabolismo , Fenótipo , Neuroimagem , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo
3.
Eur Neuropsychopharmacol ; 26(11): 1794-1805, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27642078

RESUMO

It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice.


Assuntos
Anfetamina/farmacologia , Proteínas de Transporte/biossíntese , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo , Citocinas/biossíntese , Neurônios Dopaminérgicos/efeitos dos fármacos , Inflamação/metabolismo , Receptores de Dopamina D1/biossíntese , Receptores de Dopamina D2/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Autorradiografia , Proteínas de Transporte/genética , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Citocinas/genética , Denervação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...