Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10282, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581305

RESUMO

Kidney stone disease (KSD) is a prevalent disorder that causes human morbidity worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defect to complex interaction between genetic and environmental factors. Since mutations of genes responsible for KSD in a majority of families are still unknown, our group is identifying mutations of these genes by means of genomic and genetic analyses. In this study, we identified a novel loss-of-function mutation of PBK, encoding the PDZ binding kinase, that was found to be associated with KSD in an affected Thai family. Glycine (Gly) substituted by arginine (Arg) at position 43 (p.Gly43Arg) in PBK cosegregated with the disease in affected members of this family, but was absent in 180 normal control subjects from the same local population. Gly43 is highly evolutionarily conserved in vertebrates, and its substitution affects protein structure by alterations in H-bond forming patterns. This p.Gly43Arg substitution results in instability of the variant PBK protein as examined in HEK293T cells. The variant PBK protein (p.Gly43Arg) demonstrated decreased kinase activity to phosphorylate p38 MAPK as analyzed by immunoblotting and antibody microarray techniques. Taken together, these findings suggest a possible new mechanism of KSD associated with pathogenic PBK variation.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Substituição de Aminoácidos , Análise Mutacional de DNA , Feminino , Células HEK293 , Humanos , Cálculos Renais/genética , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Linhagem , Estabilidade Proteica , Tailândia
2.
Sci Rep ; 8(1): 10453, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992996

RESUMO

Human kidney stone disease (KSD) causes significant morbidity and public health burden worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defects to complex interaction between genetic and environmental factors. However, the genetic defects causing KSD in the majority of affected families are still unknown. Here, we report the discovery of mutations of SCN10A, encoding NaV1.8 α subunit of voltage-gated sodium channel, in families with KSD. The region on chromosome 3 where SCN10A locates was initially identified in a large family with KSD by genome-wide linkage analysis and exome sequencing. Two mutations (p.N909K and p.K1809R) in the same allele of SCN10A co-segregated with KSD in the affected family. Additional mutation (p.V1149M) of SCN10A was identified in another affected family, strongly supporting the causal role of SCN10A for KSD. The amino acids at these three positions, N909, K1809, and V1149, are highly conserved in vertebrate evolution, indicating their structural and functional significances. NaV1.8 α subunit mRNA and protein were found to express in human kidney tissues. The mutant proteins expressed in cultured cells were unstable and causing reduced current density as analyzed by whole-cell patch-clamp technique. Thus, loss-of-function mutations of SCN10A were associated with KSD in the families studied.


Assuntos
Cálculos Renais/genética , Mutação com Perda de Função , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Cromossomos Humanos Par 3/genética , Saúde da Família , Ligação Genética , Predisposição Genética para Doença , Humanos , Ativação do Canal Iônico , Proteínas Mutantes/química , Proteínas Mutantes/genética , Técnicas de Patch-Clamp , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...