Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Lab Invest ; 99(1): 138-145, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30310180

RESUMO

Vascular leakage, protein exudation, and edema formation are events commonly triggered by inflammation and facilitated by gaps that form between adjacent endothelial cells (ECs) of the vasculature. In such paracellular gap formation, the role of EC contraction is widely implicated, and even therapeutically targeted. However, related measurement approaches remain slow, tedious, and complex to perform. Here, we have developed a multiplexed, high-throughput screen to simultaneously quantify paracellular gaps, EC contractile forces, and to visualize F-actin stress fibers, and VE-cadherin. As proof-of-principle, we examined barrier-protective mechanisms of the Rho-associated kinase inhibitor, Y-27632, and the canonical agonist of the Tie2 receptor, Angiopoietin-1 (Angpt-1). Y-27632 reduced EC contraction and actin stress fiber formation, whereas Angpt-1 did not. Yet both agents reduced thrombin-, LPS-, and TNFα-induced paracellular gap formation. This unexpected result suggests that Angpt-1 can achieve barrier defense without reducing EC contraction, a mechanism that has not been previously described. This insight was enabled by the multiplex nature of the force-based platform. The high-throughput format we describe should accelerate both mechanistic studies and the screening of pharmacological modulators of endothelial barrier function.


Assuntos
Citoesqueleto de Actina/fisiologia , Células Endoteliais/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Amidas , Angiopoietina-1 , Antígenos CD/metabolismo , Caderinas/metabolismo , Endotélio Vascular/fisiologia , Humanos , Junções Intercelulares/fisiologia , Microscopia de Fluorescência , Permeabilidade , Cultura Primária de Células , Piridinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...