Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758657

RESUMO

Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of the topological insulator Bi2Se3, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi2Se3 films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with 6 and 21.2 eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wave function relocation of the topological surface states, our work lays the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision.

2.
Nat Commun ; 11(1): 5607, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154376

RESUMO

Interfacial adhesion energy is a fundamental property of two-dimensional (2D) layered materials and van der Waals heterostructures due to their intrinsic ultrahigh surface to volume ratio, making adhesion forces very strong in many processes related to fabrication, integration and performance of devices incorporating 2D crystals. However, direct quantitative characterization of adhesion behavior of fresh and aged homo/heterointerfaces at nanoscale has remained elusive. Here, we use an atomic force microscopy technique to report precise adhesion measurements in ambient air through well-defined interactions of tip-attached 2D crystal nanomesas with 2D crystal and SiOx substrates. We quantify how different levels of short-range dispersive and long-range electrostatic interactions respond to airborne contaminants and humidity upon thermal annealing. We show that a simple but very effective precooling treatment can protect 2D crystal substrates against the airborne contaminants and thus boost the adhesion level at the interface of similar and dissimilar van der Waals heterostructures. Our combined experimental and computational analysis also reveals a distinctive interfacial behavior in transition metal dichalcogenides and graphite/SiOx heterostructures beyond the widely accepted van der Waals interaction.

3.
ACS Appl Mater Interfaces ; 10(50): 43774-43784, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30484317

RESUMO

The superior electronic and mechanical properties of two-dimensional layered transition-metal dichalcogenides could be exploited to make a broad range of devices with attractive functionalities. However, the nanofabrication of such layered material-based devices still needs resist-based lithography and plasma etching processes for patterning layered materials into functional device features. Such patterning processes lead to unavoidable contaminations, to which the transport characteristics of atomically thin-layered materials are very sensitive. More seriously, such lithography-introduced contaminants cannot be safely eliminated by conventional semiconductor cleaning approaches. This challenge seriously retards the manufacturing of large arrays of layered material-based devices with consistent characteristics. Toward addressing this challenge, we introduce a rubbing-induced site-selective growth method capable of directly generating few-layer MoS2 device patterns without the need of any additional patterning processes. This method consists of two critical steps: (i) a damage-free mechanical rubbing process for generating microscale triboelectric charge patterns on a dielectric surface and (ii) site-selective deposition of MoS2 within rubbing-induced charge patterns. Our microscopy characterizations in combination with finite element analysis indicate that the field magnitude distribution within triboelectric charge patterns determines the morphologies of grown MoS2 patterns. In addition, the MoS2 line patterns produced by the presented method have been implemented for making arrays of working transistors and memristors. These devices exhibit a high yield and good uniformity in their electronic properties over large areas. The presented method could be further developed into a cost-efficient nanomanufacturing approach for producing functional device patterns based on various layered materials.

4.
ACS Cent Sci ; 4(2): 288-297, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29532029

RESUMO

We combine conductive atomic force microscopy (CAFM) and molecular dynamics (MD) simulations to reveal the interaction of atomically thin layered materials (ATLMs) down to nanoscale lateral dimension. The setup also allows quantifying, for the first time, the effect of layer number and electric field on the dielectric constant of ATLMs with few-layer down to monolayer thickness. Our CAFM-assisted electrostatic technique shows that high-quality mono- and bilayer graphene is reliably produced at significant yields only by the shear type of bond breaking between layers, whereas the normal type of bond breaking exhibits a very stochastic process mainly due to the coexistence of local delamination and interlayer twist. Our dielectric constant measurements also reveal a very weak dependence on the layer number and the electric field (up to our experimental limit of 0.1 V/Å), which is in contrast with theoretical reports. Owing to unexpectedly large variations in the screening ability of pristine monolayer graphene under ambient conditions, we further demonstrate that the effective dielectric constant of monolayer graphene can be engineered to provide a broad spectrum of dielectric responses (3.5-17) through oxidation and thermal annealing, thus confirming its much higher chemical reactivity than bilayer and few layers.

5.
Sci Rep ; 7: 42821, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220816

RESUMO

In few-layer graphene (FLG) systems on a dielectric substrate such as SiO2, the addition of each extra layer of graphene can drastically alter their electronic and structural properties. Here, we map the charge distribution among the individual layers of finite-size FLG systems using a novel spatial discrete model that describes both electrostatic interlayer screening and fringe field effects. Our results reveal that the charge density in the region very close to the edges is screened out an order of magnitude more weakly than that across the central region of the layers. Our discrete model suggests that the interlayer charge screening length in 1-8 layer thick graphene systems depends mostly on the overall gate/molecular doping level rather than on temperature, in particular at an induced charge density >5 × 1012 cm-2, and can reliably be determined to be larger than half the interlayer spacing but shorter than the bilayer thickness. Our model can be used for designing FLG-based devices, and offers a simple rule regarding the charge distribution in FLG: approximately 70%, 20%, 6% and 3% (99% overall) of the total induced charge density reside within the four innermost layers, implying that the gate-induced electric field is not definitely felt by >4th layer.

6.
Microsyst Nanoeng ; 3: 17053, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057879

RESUMO

Top-down lithography techniques are needed for manufacturing uniform device structures based on emerging 2D-layered materials. Mechanical exfoliation approaches based on nanoimprint and nanoprint principles are capable of producing ordered arrays of multilayer transition metal dichalcogenide microstructures with a high uniformity of feature dimensions. In this study, we present a study on the applicability of nanoimprint-assisted shear exfoliation for generating ultrathin monolayer and few-layer MoS2 structures as well as the critical limits of feature dimensions produced via such nanoimprint and nanoprint-based processes. In particular, this work shows that give a lateral feature size of MoS2 structures that are pre-patterned on a bulk stamp, there exists a critical thickness or aspect ratio value, below which the exfoliated layered structures exhibit major defects. To exfoliate a high-quality, uniform monolayer or few-layer structures, the characteristic lateral feature sizes of such structures need to be in the sub-100 nm regimes. In addition, the exfoliated MoS2 flakes of critical thicknesses exhibit prominent interlayer twisting features on their cleaved surfaces. Field-effect transistors made from these MoS2 flakes exhibit multiple (or quasi-analog-tunable) charge memory states. This work advances the knowledge regarding the limitations and application scope of nanoimprint and nanoprint processes in manufacturing nano/microstructures based on layered materials and provides a method for producing multi-bit charge memory devices.

7.
ACS Nano ; 9(9): 8773-85, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26302003

RESUMO

MoS2 and other semiconducting transition metal dichalcogenides (TMDCs) are of great interest due to their excellent physical properties and versatile chemistry. Although many recent research efforts have been directed to explore attractive properties associated with MoS2 monolayers, multilayer/few-layer MoS2 structures are indeed demanded by many practical scale-up device applications, because multilayer structures can provide sizable electronic/photonic state densities for driving upscalable electrical/optical signals. Currently there is a lack of processes capable of producing ordered, pristine multilayer structures of MoS2 (or other relevant TMDCs) with manufacturing-grade uniformity of thicknesses and electronic/photonic properties. In this article, we present a nanoimprint-based approach toward addressing this challenge. In this approach, termed as nanoimprint-assisted shear exfoliation (NASE), a prepatterned bulk MoS2 stamp is pressed into a polymeric fixing layer, and the imprinted MoS2 features are exfoliated along a shear direction. This shear exfoliation can significantly enhance the exfoliation efficiency and thickness uniformity of exfoliated flakes in comparison with previously reported exfoliation processes. Furthermore, we have preliminarily demonstrated the fabrication of multiple transistors and biosensors exhibiting excellent device-to-device performance consistency. Finally, we present a molecular dynamics modeling analysis of the scaling behavior of NASE. This work holds significant potential to leverage the superior properties of MoS2 and other emerging TMDCs for practical scale-up device applications.

8.
ACS Nano ; 7(7): 5870-81, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23790007

RESUMO

Large-area few-layer-MoS2 device arrays are desirable for scale-up applications in nanoelectronics. Here we present a novel approach for producing orderly arranged, pristine few-layer MoS2 flakes, which holds significant potential to be developed into a nanomanufacturing technology that can be scaled up. We pattern bulk MoS2 stamps using lithographic techniques and subsequently transfer-print prepatterned MoS2 features onto pristine and plasma-charged SiO2 substrates. Our work successfully demonstrates the transfer printing of MoS2 flakes into ordered arrays over cm(2)-scale areas. Especially, the MoS2 patterns printed on plasma-charged substrates feature a regular edge profile and a narrow distribution of MoS2 flake thicknesses (i.e., 3.0 ± 1.9 nm) over cm(2)-scale areas. Furthermore, we experimentally show that our plasma-assisted printing process can be generally used for producing other emerging atomically layered nanostructures (e.g., graphene nanoribbons). We also demonstrate working n-type transistors made from printed MoS2 flakes that exhibit excellent properties (e.g., ON/OFF current ratio 10(5)-10(7), field-effect mobility on SiO2 gate dielectrics 6 to 44 cm(2)/(V s)) as well as good uniformity of such transistor parameters over a large area. Finally, with additional plasma treatment processes, we also show the feasibility of creation of p-type transistors as well as pn junctions in MoS2 flakes. This work lays an important foundation for future scale-up nanoelectronic applications of few-layer-MoS2 micro- and nanostructures.


Assuntos
Nanopartículas Metálicas/química , Impressão Molecular/métodos , Molibdênio/química , Gases em Plasma/química , Sulfetos/química , Transistores Eletrônicos , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...