Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116647, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703503

RESUMO

OBJECTIVE: To improve the biological and toxicological properties of Mefenamic acid (MA), the galactosylated prodrug of MA named MefeGAL was included in polymeric solid dispersions (PSs) composed of poly(glycerol adipate) (PGA) and Pluronic® F68 (MefeGAL-PS). MefeGAL-PS was compared with polymeric solid formulations of MA (MA-PS) or a mixture of equal ratio of MefeGAL/MA (Mix-PS). METHODS: The in vitro and in vivo pharmacological and toxicological profiles of PSs have been investigated. In detail, we evaluated the anti-inflammatory (carrageenan-induced paw edema test), analgesic (acetic acid-induced writhing test) and ulcerogenic activity in mice after oral treatment. Additionally, the antiproliferative activity of PSs was assessed on in vitro models of colorectal and non-small cell lung cancer. RESULTS: When the PSs were resuspended in water, MefeGAL's, MA's and their mixture's apparent solubilities improved due to the interaction with the polymeric formulation. By comparing the in-vivo biological performance of MefeGAL-PS with that of MA, MefeGAL and MA-PS, it was seen that MefeGAL-PS exhibited the same sustained and delayed analgesic and anti-inflammatory profile as MefeGAL but did not cause gastrointestinal irritation. The pharmacological effect of Mix-PS was present from the first hours after administration, lasting about 44 hours with only slight gastric mucosa irritation. In-vitro evaluation indicated that Mix-PS had statistically significant higher cytotoxicity than MA-PS and MefeGAL-PS. CONCLUSIONS: These preliminary data are promising evidence that the galactosylated prodrug approach in tandem with a polymer-drug solid dispersion formulation strategy could represent a new drug delivery route to improve the solubility and biological activity of NSAIDs.

2.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727266

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Assuntos
Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Podossomos/metabolismo , Podossomos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pró-Fármacos/farmacologia
3.
Sci Rep ; 14(1): 8272, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594253

RESUMO

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Assuntos
Proteínas de Transporte de Cátions , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Ferro/metabolismo
4.
Eur J Med Chem ; 268: 116193, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364714

RESUMO

AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 µM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Neoplasias da Próstata/tratamento farmacológico , 3-Hidroxiesteroide Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
5.
J Colloid Interface Sci ; 659: 339-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176243

RESUMO

Nanotechnology's potential in revolutionising cancer treatments is evident in targeted drug delivery systems (DDSs) engineered to optimise therapeutic efficacy and minimise toxicity. This study examines a novel nanocarrier constructed with carbon nano-onions (CNOs), engineered and evaluated for its ability to selectively target cancer cells overexpressing the hyaluronic acid receptor; CD44. Our results highlighted that the CNO-based nanocarrier coupled with hyaluronic acid as the targeting agent demonstrated effective uptake by CD44+ PANC-1 and MIA PaCa-2 cells, while avoiding CD44- Capan-1 cells. The CNO-based nanocarrier also exhibited excellent biocompatibility in all tested pancreatic ductal adenocarcinoma (PDAC) cells, as well as healthy cells. Notably, the CNO-based nanocarrier was successfully loaded with chemotherapeutic 4-(N)-acyl- sidechain-containing prodrugs derived from gemcitabine (GEM). These prodrugs alone exhibited remarkable efficacy in killing PDAC cells which are known to be GEM resistant, and their efficacy was amplified when combined with the CNO-based nanocarrier, particularly in targeting GEM-resistant CD44+ PDAC cells. These findings demonstrate the potential of CNOs as promising scaffolds in advancing targeted DDSs, signifying the translational potential of carbon nanoparticles for cancer therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pró-Fármacos , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Cebolas , Ácido Hialurônico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
6.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570694

RESUMO

Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.


Assuntos
Doadores de Óxido Nítrico , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Músculo Liso Vascular , Proteômica , Proliferação de Células , Células Cultivadas , Miócitos de Músculo Liso
7.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511019

RESUMO

The application of gaseous signaling molecules like NO, H2S or CO to overcome the multidrug resistance in cancer treatment has proven to be a viable therapeutic strategy. The development of CO-releasing molecules (CORMs) in a controlled manner and in targeted tissues remains a challenge in medicinal chemistry. In this paper, we describe the design, synthesis and chemical and enzymatic stability of a novel non-metal CORM (1) able to release intracellularly CO and, simultaneously, facilitate fluorescent degradation of products under the action of esterase. The toxicity of 1 against different human cancer cell lines and their drug-resistant counterparts, as well as the putative mechanism of toxicity were investigated. The drug-resistant cancer cell lines efficiently absorbed 1 and 1 was able to restore their sensitivity vs. chemotherapeutic drugs by causing a CO-dependent mitochondrial oxidative stress that culminated in mitochondrial-dependent apoptosis. These results demonstrate the importance of CORMs in cases where conventional chemotherapy fails and thus open the horizons towards new combinatorial strategies to overcome multidrug resistance.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Humanos , Monóxido de Carbono/farmacologia , Monóxido de Carbono/química , Carvão Vegetal , Mitocôndrias/metabolismo , Apoptose , Transdução de Sinais , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química
8.
Eur J Med Chem ; 257: 115542, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290185

RESUMO

Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1ß release (35.5 ± 8.8% µM) at 10 µM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Lipopolissacarídeos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Teóricos
9.
Biol Chem ; 404(6): 601-606, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36867068

RESUMO

Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.


Assuntos
Nitratos , Dermatopatias , Animais , Tolerância a Medicamentos , Nitratos/farmacologia , Nitratos/uso terapêutico , Pele , Dermatopatias/tratamento farmacológico , Suínos , Cicatrização , Células HaCaT , Humanos
10.
Antioxidants (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36829903

RESUMO

In the last years, research proofs have confirmed that hydrogen sulfide (H2S) plays an important role in various physio-pathological processes, such as oxidation, inflammation, neurophysiology, and cardiovascular protection; in particular, the protective effects of H2S in cardiovascular diseases were demonstrated. The interest in H2S-donating molecules as tools for biological and pharmacological studies has grown, together with the understanding of H2S importance. Here we performed a comparative study of a series of H2S donor molecules with different chemical scaffolds and H2S release mechanisms. The compounds were tested in human serum for their stability and ability to generate H2S. Their vasorelaxant properties were studied on rat aorta strips, and the capacity of the selected compounds to protect NO-dependent endothelium reactivity in an acute oxidative stress model was tested. H2S donors showed different H2S-releasing kinetic and produced amounts and vasodilating profiles; in particular, compound 6 was able to attenuate the dysfunction of relaxation induced by pyrogallol exposure, showing endothelial protective effects. These results may represent a useful basis for the rational development of promising H2S-releasing agents also conjugated with other pharmacophores.

11.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500256

RESUMO

Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Humanos , Ligação Proteica , Ligantes , Agonistas de Receptores de Canabinoides/química , Relação Estrutura-Atividade , Sulfonamidas , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
12.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500607

RESUMO

BRAF is a serine/threonine kinase frequently mutated in human cancers. BRAFV600E mutated protein is targeted through the use of kinase inhibitors which are approved for the treatment of melanoma; however, their long-term efficacy is hampered by resistance mechanisms. The PROTAC-induced degradation of BRAFV600E has been proposed as an alternative strategy to avoid the onset of resistance. In this study, we designed a series of compounds where the BRAF kinase inhibitor encorafenib was conjugated to pomalidomide through different linkers. The synthesized compounds maintained their ability to inhibit the kinase activity of mutated BRAF with IC50 values in the 40-88 nM range. Selected compounds inhibited BRAFV600E signaling and cellular proliferation of A375 and Colo205 tumor cell lines. Compounds 10 and 11, the most active of the series, were not able to induce degradation of mutated BRAF. Docking and molecular dynamic studies, conducted in comparison with the efficient BRAF degrader P5B, suggest that a different orientation of the linker bearing the pomalidomide substructure, together with a decreased mobility of the solvent-exposed part of the conjugates, could explain this behavior.


Assuntos
Quimera de Direcionamento de Proteólise , Proteínas Proto-Oncogênicas B-raf , Humanos , Sulfonamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Mutação
13.
J Med Chem ; 65(19): 12701-12724, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36162075

RESUMO

In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.


Assuntos
Leucemia Mieloide Aguda , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Camundongos , Antivirais/farmacologia , Di-Hidro-Orotato Desidrogenase , Dipiridamol/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Piridinas/farmacologia , Piridinas/uso terapêutico , Relação Estrutura-Atividade
14.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35631377

RESUMO

Carbohydrates are one of the most abundant and important classes of biomolecules. The variety in their structures makes them valuable carriers that can improve the pharmaceutical phase, pharmacokinetics and pharmacodynamics of well-known drugs. D-galactose is a simple, naturally occurring monosaccharide sugar that has been extensively studied for use as a carrier and has proven to be valuable in this role. With the aim of validating the galactose-prodrug approach, we have investigated the galactosylated prodrugs ibuprofen, ketoprofen, flurbiprofen and indomethacin, which we have named IbuGAL, OkyGAL, FluGAL and IndoGAL, respectively. Their physicochemical profiles in terms of lipophilicity, solubility and chemical stability have been evaluated at different physiological pH values, as have human serum stability and serum protein binding. Ex vivo intestinal permeation experiments were performed to provide preliminary insights into the oral bioavailability of the galactosylated prodrugs. Finally, their anti-inflammatory, analgesic and ulcerogenic activities were investigated in vivo in mice after oral treatment. The present results, taken together with those of previous studies, undoubtedly validate the galactosylated prodrug strategy as a problem-solving technique that can overcome the disadvantages of NSAIDs.

15.
Eur J Med Chem ; 237: 114366, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447434

RESUMO

The aldo-keto reductase 1C3 (AKR1C3) enzyme is considered an attractive target in Castration Resistant Prostate Cancer (CRPC) because of its role in the biosynthesis of androgens. Flufenamic acid, a non-selective AKR1C3 inhibitor, has previously been subjected to bioisosteric modulation to give rise to a series of compounds with the hydroxytriazole core. In this work, the hit compound of the previous series has been modulated further, and new, more potent, and selective derivatives have been obtained. The poor solubility of the most active compound (cpd 5) has been improved by substituting the triazole core with an isoxazole heteronucleous, with similar enzymatic activity being retained. Potent AKR1C3 inhibition is translated into antiproliferative effects against the 22RV1 CRPC cellular model, and the in-silico design, synthesis and biological activity of new compounds are described herein. Compounds have also been assayed in combination with two approved antitumor drugs, abiraterone and enzalutamide.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Antineoplásicos , Inibidores Enzimáticos , Neoplasias de Próstata Resistentes à Castração , Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Androgênios , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
16.
Antioxidants (Basel) ; 11(1)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35052670

RESUMO

Chronic use of glyceryl trinitrate (GTN) is limited by serious side effects, such as tolerance and endothelial dysfunction of coronary and resistance arteries. Although GTN is used as a drug since more than 130 years, the mechanisms of the vasodilatory effects and of tolerance development to organic nitrates are still incompletely elucidated. New synthesized organic nitrates with and without antioxidant properties were characterized for their ex vivo tolerance profile, in order to investigate the oxidative stress hypothesis of nitrate tolerance. The organic nitrates studied showed different vasodilation and tolerance profiles, probably due to the ability or inability of the compounds to interact with the aldehyde dehydrogenase-2 enzyme (ALDH-2) involved in bioactivation. Furthermore, nitrooxy derivatives endowed with antioxidant properties did not determine the onset of tolerance, even if bioactivated by ALDH-2. The results of this study could be further evidence of the involvement of ALDH-2 in the development of nitrate tolerance. Moreover, the behavior of organic nitrates with antioxidant properties supports the hypothesis of the involvement of ROS in inactivating ALDH-2.

17.
J Adv Res ; 35: 267-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35024201

RESUMO

Introduction: Hydrogen sulfide (H2S) is a fundamental biological endogenous gas-mediator in the respiratory system. It regulates pivotal patho-physiological processes such as oxidative stress, pulmonary circulation, airway tone and inflammation. Objectives: We herein describe the design and synthesis of molecular hybrids obtained by the condensation of several corticosteroids with different hydrogen sulfide releasing moieties. Methods: All the molecules are characterized for their ability to release H2S both via amperometric approach and using a fluorescent probe. The chemical stability of the newly synthesized hybrid molecules has been investigated at differing pH values and in human serum. Results: Prednisone-TBZ hybrid (compound 7) was selected for further evaluations. The obtained results from the in vitro and in vivo studies clearly show evidence in favor of the anti-inflammatory properties of the released H2S. Conclusions: The protective effect on airway remodeling makes the hybrid Prednisone-TBZ (compound 7) as a promising therapeutic option in reducing allergic asthma symptoms and exacerbations.


Assuntos
Asma , Sulfeto de Hidrogênio , Corticosteroides , Animais , Anti-Inflamatórios , Asma/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Camundongos
18.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832931

RESUMO

In our previous studies, a ketorolac-galactose conjugate (ketogal) showed prolonged anti-inflammatory and analgesic activity, causing less gastric ulcerogenic effect and renal toxicity than its parent drug ketorolac. In order to demonstrate the safer profile of ketogal compared to ketorolac, histopathological changes in the small intestine and liver using three staining techniques before and after repeated oral administration in mice with ketorolac or an equimolecular dose of its galactosylated prodrug ketogal were assessed. Cytotoxicity and oxidative stress parameters were evaluated and compared in ketorolac- and ketogal-treated Human Primary Colonic Epithelial cells at different concentrations and incubation times. Evidence of mitochondrial oxidative stress was found after ketorolac treatment; this was attributable to altered mitochondrial membrane depolarization and oxidative stress parameters. No mitochondrial damage was observed after ketogal treatment. In ketorolac-treated mice, severe subepithelial vacuolation and erosion with inflammatory infiltrates and edematous area in the intestinal tissues were noted, as well as alterations in sinusoidal spaces and hepatocytes with foamy cytoplasm. In contrast, treatment with ketogal provided a significant improvement in the morphology of both organs. The prodrug clearly demonstrated a safer profile than its parent drug both in vitro and ex vivo, confirming that ketogal is a strategic alternative to ketorolac.

19.
Chem Sci ; 12(13): 4740-4746, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163730

RESUMO

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as "unconventional" therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative therapeutic modalities. Among ROS and RNS, peroxynitrite (ONOO-) plays a dominant role in chemistry and biology in view of its potent oxidizing power and cytotoxic action. We have designed and synthesized a molecular hybrid based on benzophenothiazine as a red light-harvesting antenna joined to an N-nitroso appendage through a flexible spacer. Single photon red light excitation of this molecular construct triggers the release of nitric oxide (˙NO) and simultaneously produces superoxide anions (O2˙-). The diffusion-controlled reaction between these two radical species generates ONOO-, as confirmed by the use of fluorescein-boronate as a highly selective chemical probe. Besides, the red fluorescence of the hybrid allows its tracking in different types of cancer cells where it is well-tolerated in the dark but induces remarkable cell mortality under irradiation with red light in a very low concentration range, with very low light doses (ca. 1 J cm-2). This ONOO- generator activatable by highly biocompatible and tissue penetrating single photon red light can open up intriguing prospects in biomedical research, where precise and spatiotemporally controlled concentrations of ONOO- are required.

20.
Bioorg Chem ; 111: 104911, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33901795

RESUMO

We herein report a study on a set of hybrid compounds in which 3-R-substituted furoxan moieties (R = CH3, CONH2, CN, SO2C6H5), endowed with varying NO-releasing capacities, are joined to a mitochondrial probe, rhodamine B. Each product has been investigated for its ability to release NO both in physiological solution, in the presence of cysteine, and in A549 lung adenocarcinoma cancer cells. The cytotoxicity of all the products against the aforementioned cancer cells has been assessed, including the structurally related compounds with no mitochondrial targeting, which were taken as a reference. In the case of the models bearing the -CH3 and -CONH2 groups at the 3-position on the furoxan, only the targeted models showed a significant cytotoxic activity, and only at the highest concentrations, in accordance with their weak NO-releasing properties. On the contrary, the presence of the strong electron-withdrawing groups, as -CN and -SO2C6H5, at the 3-position gave rise to anticancer agents, likely because of the high NO-releasing and of their capability of inhibiting cellular proteins by covalent binding. In detail, the rhodamine hybrid containing the 3-SO2C6H5 substituted furoxan moiety emerged as the most interesting product as it showed high cytotoxicity over the entire concentration range tested. This substructure was also linked to a phenothiazine scaffold that is able to accumulate in lysosomes. Nevertheless, mitochondrial targeting for these NO-donor furoxan substructures was found to be the most efficient.


Assuntos
Antineoplásicos/farmacologia , Óxido Nítrico/metabolismo , Organelas/química , Oxidiazóis/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Organelas/metabolismo , Oxidiazóis/química , Oxidiazóis/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...