Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 383(6686): 952-953, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422156

RESUMO

Nonequilibrium fluctuations reveal nonuniform heat dissipation in living cells.

2.
Sci Rep ; 13(1): 4517, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934145

RESUMO

We study the heat transfer between two nanoparticles held at different temperatures that interact through nonreciprocal forces, by combining molecular dynamics simulations with stochastic thermodynamics. Our simulations reveal that it is possible to construct nano refrigerators that generate a net heat transfer from a cold to a hot reservoir at the expense of power exerted by the nonreciprocal forces. Applying concepts from stochastic thermodynamics to a minimal underdamped Langevin model, we derive exact analytical expressions predictions for the fluctuations of work, heat, and efficiency, which reproduce thermodynamic quantities extracted from the molecular dynamics simulations. The theory only involves a single unknown parameter, namely an effective friction coefficient, which we estimate fitting the results of the molecular dynamics simulation to our theoretical predictions. Using this framework, we also establish design principles which identify the minimal amount of entropy production that is needed to achieve a certain amount of uncertainty in the power fluctuations of our nano refrigerator. Taken together, our results shed light on how the direction and fluctuations of heat flows in natural and artificial nano machines can be accurately quantified and controlled by using nonreciprocal forces.

3.
Phys Rev E ; 106(1-1): 014103, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974517

RESUMO

Characterization of composite materials, whose properties vary in space over microscopic scales, has become a problem of broad interdisciplinary interest. In particular, estimation of the inhomogeneous transport coefficients, e.g., the diffusion coefficient or the heat conductivity, which shape important processes in biology and engineering, is a challenging task. The analysis of such systems is further complicated because two alternative formulations of the inhomogeneous transport equations exist in the literature-the Smoluchowski and Fokker-Planck equations, which are also related to the so-called Ito-Stratonovich dilemma. Using the theory of statistical physics, we show that the two formulations, usually regarded as distinct models, are physically equivalent. From this result we develop efficient estimates for the transverse space-dependent diffusion coefficient in fluids near a phase boundary. Our method requires only measurements of escape probabilities and mean exit times of molecules leaving a narrow spatial region. We test our estimates in three case studies: (i) a Langevin model of a Büttikker-Landauer ratchet; atomistic molecular-dynamics simulations of liquid-water molecules in contact with (ii) vapor, and (iii) soap (surfactant) film which has promising applications in physical chemistry. Our analysis reveals that near the surfactant monolayer the mobility of water molecules is slowed down almost twice with respect to the bulk liquid. Moreover, the diffusion coefficient of water correlates with the transition from hydrophilic to hydrophobic parts of the film.

4.
Phys Rev E ; 105(2-1): 024112, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291142

RESUMO

We derive universal bounds for the finite-time survival probability of the stochastic work extracted in steady-state heat engines and the stochastic heat dissipated to the environment. We also find estimates for the time-dependent thresholds that these quantities do not surpass with a prescribed probability. At long times, the tightest thresholds are proportional to the large deviation functions of stochastic entropy production. Our results entail an extension of martingale theory for entropy production, for which we derive universal inequalities involving its maximum and minimum statistics that are valid for generic Markovian dynamics in nonequilibrium stationary states. We test our main results with numerical simulations of a stochastic photoelectric device.

5.
J Phys Chem B ; 126(3): 670-678, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35015542

RESUMO

In this study, the thermal relaxation of the 20 naturally occurring amino acids in water and in the protein lysozyme is investigated using transient nonequilibrium molecular dynamics simulations. By modeling the thermal relaxation process, the relaxation times of the amino acids in water occurs over a time scale covering 2-5 ps. For the hydrophobic amino acids, the relaxation time is controlled by the size of the hydrocarbon side chain, while for hydrophilic amino acids, the number of hydrogen bonds does not significantly affect the time scales of the heat dissipation. Our results show that the interfacial thermal conductance at the amino acid-water interface is in the range of 40-80 MW m-2 K-1. Hydrophobic and aromatic amino acids tend to have a lower interfacial thermal conductance. Notably, we show that amino acids can be correlated with their thermal relaxation times and molar masses, into simply connected phases with the same hydrophilicity, hydrophobicity, and aromaticity. The thermal relaxation slows down by a factor of up to five in the protein relative to that in water. In the case of the hydrophobic amino acids in the protein lysozyme, the slow down in the thermal relaxation relative to that in water appears to be controlled primarily by the size of the side chain.


Assuntos
Aminoácidos , Simulação de Dinâmica Molecular , Aminoácidos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas/química , Água/química
6.
PLoS One ; 16(11): e0258700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34739484

RESUMO

Protecting healthcare professionals is crucial in maintaining a functioning healthcare system. The risk of infection and optimal preventive strategies for healthcare workers during the COVID-19 pandemic remain poorly understood. Here we report the results of a cohort study that included pre- and asymptomatic healthcare workers. A weekly testing regime has been performed in this cohort since the beginning of the COVID-19 pandemic to identify infected healthcare workers. Based on these observations we have developed a mathematical model of SARS-CoV-2 transmission that integrates the sources of infection from inside and outside the hospital. The data were used to study how regular testing and a desynchronisation protocol are effective in preventing transmission of COVID-19 infection at work, and compared both strategies in terms of workforce availability and cost-effectiveness. We showed that case incidence among healthcare workers is higher than would be explained solely by community infection. Furthermore, while testing and desynchronisation protocols are both effective in preventing nosocomial transmission, regular testing maintains work productivity with implementation costs.


Assuntos
Infecções Assintomáticas , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/economia , Pessoal de Saúde , SARS-CoV-2 , Algoritmos , Análise Custo-Benefício , Infecção Hospitalar , Coleta de Dados , Atenção à Saúde , Hospitais , Humanos , Programas de Rastreamento/métodos , Modelos Teóricos , Exposição Ocupacional , Pandemias , Risco , Processos Estocásticos , Suíça/epidemiologia
7.
Eur Phys J E Soft Matter ; 44(11): 132, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34718875

RESUMO

Understanding the physical and chemical properties of viral infections at molecular scales is a major challenge for the scientific community more so with the outbreak of global pandemics. There is currently a lot of effort being placed in identifying molecules that could act as putative drugs or blockers of viral molecules. In this work, we computationally explore the importance in antiviral activity of a less studied class of molecules, namely surfactants. We employ all-atoms molecular dynamics simulations to study the interaction between the receptor-binding domain of the SARS-CoV-2 spike protein and the phospholipid lecithin (POPC), in water. Our microsecond simulations show a preferential binding of lecithin to the receptor-binding motif of SARS-CoV-2 with binding free energies significantly larger than [Formula: see text]. Furthermore, hydrophobic interactions involving lecithin non-polar tails dominate these binding events, which are also accompanied by dewetting of the receptor binding motif. Through an analysis of fluctuations in the radius of gyration of the receptor-binding domain, its contact maps with lecithin molecules, and distributions of water molecules near the binding region, we elucidate molecular interactions that may play an important role in interactions involving surfactant-type molecules and viruses. We discuss our minimal computational model in the context of lecithin-based liposomal nasal sprays as putative mitigating therapies for COVID-19.


Assuntos
Lecitinas/química , Simulação de Acoplamento Molecular , Fosfatidilcolinas/química , Glicoproteína da Espícula de Coronavírus/química , Tensoativos/química , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Sprays Nasais , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
J Theor Biol ; 523: 110718, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-33862091

RESUMO

Protection of the healthcare workforce is of paramount importance for the care of patients in the setting of a pandemic such as coronavirus disease 2019 (COVID-19). Healthcare workers are at increased risk of becoming infected. The ideal organisational strategy to protect the workforce in a situation in which social distancing cannot be maintained remains to be determined. In this study, we have mathematically modelled strategies for the employment of the hospital workforce with the goal of simulating the health and productivity of the workers. The models were designed to determine if desynchronization of medical teams by dichotomizing the workers may protect the workforce. Our studies model workforce productivity and the efficiency of home office applied to the case of COVID-19. The results reveal that a desynchronization strategy in which two medical teams work alternating for 7 days increases the available workforce.


Assuntos
COVID-19 , Pandemias , Atenção à Saúde , Pessoal de Saúde , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Recursos Humanos
9.
Phys Rev Lett ; 126(8): 080603, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709732

RESUMO

We introduce and realize demons that follow a customary gambling strategy to stop a nonequilibrium process at stochastic times. We derive second-law-like inequalities for the average work done in the presence of gambling, and universal stopping-time fluctuation relations for classical and quantum nonstationary stochastic processes. We test experimentally our results in a single-electron box, where an electrostatic potential drives the dynamics of individual electrons tunneling into a metallic island. We also discuss the role of coherence in gambling demons measuring quantum jump trajectories.

10.
Soft Matter ; 16(40): 9202-9216, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32510065

RESUMO

The extent to which biological interfaces affect the dynamics of water plays a key role in the exchange of matter and chemical interactions that are essential for life. The density and the mobility of water molecules depend on their proximity to biological interfaces and can play an important role in processes such as protein folding and aggregation. In this work, we study the dynamics of water near glutamine surfaces-a system of interest in studies of neurodegenerative diseases. Combining molecular-dynamics simulations and stochastic modelling, we study how the mean first-passage time and related statistics of water molecules escaping subnanometer-sized regions vary from the interface to the bulk. Our analysis reveals a dynamical complexity that reflects underlying chemical and geometrical properties of the glutamine surfaces. From the first-passage time statistics of water molecules, we infer their space-dependent diffusion coefficient in directions normal to the surfaces. Interestingly, our results suggest that the mobility of water varies over a longer length scale than the chemical potential associated with the water-protein interactions. The synergy of molecular dynamics and first-passage techniques opens the possibility for extracting space-dependent diffusion coefficients in more complex, inhomogeneous environments that are commonplace in living matter.


Assuntos
Glutamina , Água , Difusão , Simulação de Dinâmica Molecular , Dobramento de Proteína
11.
Phys Rev E ; 100(4-1): 042108, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770868

RESUMO

We consider discrete-time Markov bridges, chains whose initial and final states coincide. We derive exact finite-time formulae for the joint probability distributions of additive functionals of trajectories. We apply our theory to time-integrated currents and frenesy of enzymatic reactions, which may include absolutely irreversible transitions. We discuss the information that frenesy carries about the currents and show that bridges may violate known uncertainty relations in certain cases. Numerical simulations are in perfect agreement with our theory.

12.
Phys Rev Lett ; 122(23): 230602, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298917

RESUMO

We investigate the fluctuations of the time elapsed until the electric charge transferred through a conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage times for the net number of electrons transferred between two metallic islands in the Coulomb blockade regime. Our experimental results are in excellent agreement with numerical calculations based on a recent theory describing the exact first-passage-time distributions for any nonequilibrium stationary Markov process. We also derive a simple analytical approximation for the first-passage-time distribution, which takes into account the non-Gaussian statistics of the electron transport, and show that it describes the experimental distributions with high accuracy. This universal approximation describes a wide class of stochastic processes, and can be used beyond the context of mesoscopic charge transport. In addition, we verify experimentally a fluctuation relation between the first-passage-time distributions for positive and negative thresholds.

13.
Phys Rev Lett ; 122(22): 220602, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283254

RESUMO

We employ martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally, we complement the general formalism with numerical simulations of a qubit system.

14.
Phys Rev Lett ; 121(9): 090601, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230899

RESUMO

We show that the fraction of time that a thermodynamic current spends above its average value follows the arcsine law, a prominent result obtained by Lévy for Brownian motion. Stochastic currents with long streaks above or below their average are much more likely than those that spend similar fractions of time above and below their average. Our result is confirmed with experimental data from a Brownian Carnot engine. We also conjecture that two other random times associated with currents obey the arcsine law: the time a current reaches its maximum value and the last time a current crosses its average value. These results apply to, inter alia, molecular motors, quantum dots, and colloidal systems.

15.
Phys Rev Lett ; 119(14): 140604, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053318

RESUMO

We derive an Itô stochastic differential equation for entropy production in nonequilibrium Langevin processes. Introducing a random-time transformation, entropy production obeys a one-dimensional drift-diffusion equation, independent of the underlying physical model. This transformation allows us to identify generic properties of entropy production. It also leads to an exact uncertainty equality relating the Fano factor of entropy production and the Fano factor of the random time, which we also generalize to non-steady-state conditions.

16.
Phys Rev E ; 96(2-1): 022130, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950574

RESUMO

We study the dynamics of overdamped Brownian particles diffusing in conservative force fields and undergoing stochastic resetting to a given location at a generic space-dependent rate of resetting. We present a systematic approach involving path integrals and elements of renewal theory that allows us to derive analytical expressions for a variety of statistics of the dynamics such as (i) the propagator prior to first reset, (ii) the distribution of the first-reset time, and (iii) the spatial distribution of the particle at long times. We apply our approach to several representative and hitherto unexplored examples of resetting dynamics. A particularly interesting example for which we find analytical expressions for the statistics of resetting is that of a Brownian particle trapped in a harmonic potential with a rate of resetting that depends on the instantaneous energy of the particle. We find that using energy-dependent resetting processes is more effective in achieving spatial confinement of Brownian particles on a faster time scale than performing quenches of parameters of the harmonic potential.

17.
Soft Matter ; 13(1): 22-36, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27477856

RESUMO

Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.

18.
Phys Rev E ; 93(6): 062411, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415302

RESUMO

Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Biológicos , Transcrição Gênica , Cinética , RNA/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(11): 2946-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929337

RESUMO

During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.


Assuntos
RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética/fisiologia , Difusão , Modelos Químicos , Movimento (Física) , Pinças Ópticas , Ligação Proteica , Subunidades Proteicas , RNA Polimerase I/química , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Deleção de Sequência , Processos Estocásticos , Tempo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
20.
Phys Rev Lett ; 114(12): 120601, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860731

RESUMO

The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...