Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Respir Med ; 9(4): 373-386, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33306991

RESUMO

BACKGROUND: A therapeutic vaccine that prevents recurrent tuberculosis would be a major advance in the development of shorter treatment regimens. We aimed to assess the safety and immunogenicity of the ID93 + GLA-SE vaccine at various doses and injection schedules in patients with previously treated tuberculosis. METHODS: This randomised, double-blind, placebo-controlled, phase 2a trial was conducted at three clinical sites near Cape Town, South Africa. Patients were recruited at local clinics after receiving 4 months of tuberculosis treatment, and screened for eligibility after providing written informed consent. Participants were aged 18-60 years, BCG-vaccinated, HIV-uninfected, and diagnosed with drug-sensitive pulmonary tuberculosis. Eligible patients had completed standard treatment for pulmonary tuberculosis in the past 28 days. Participants were enrolled after completing standard treatment and randomly assigned sequentially to receive vaccine or placebo in three cohorts: 2 µg intramuscular ID93 + 2 µg GLA-SE on days 0 and 56 (cohort 1); 10 µg ID93 + 2 µg GLA-SE on days 0 and 56 (cohort 2); 2 µg ID93 + 5 µg GLA-SE on days 0 and 56 and placebo on day 28 (cohort 3); 2 µg ID93 + 5 µg GLA-SE on days 0, 28, and 56 (cohort 3); or placebo on days 0 and 56 (cohorts 1 and 2), with the placebo group for cohort 3 receiving an additional injection on day 28. Randomisation was in a ratio of 3:1 for ID93 + GLA-SE and saline placebo in cohorts 1 and 2, and in a ratio of 3:3:1 for (2 ×) ID93 + GLA-SE, (3 ×) ID93 + GLA-SE, and placebo in cohort 3. The primary outcomes were safety and immunogenicity (vaccine-specific antibody response and T-cell response). For the safety outcome, participants were observed for 30 min after each injection, injection site reactions and systemic adverse events were monitored until day 84, and serious adverse events and adverse events of special interest were monitored for 6 months after the last injection. Vaccine-specific antibody responses were measured by serum ELISA, and T-cell responses after stimulation with vaccine antigens were measured in cryopreserved peripheral blood mononuclear cells specimens using intracellular cytokine staining followed by flow cytometry. This study is registered with ClinicalTrials.gov, number NCT02465216. FINDINGS: Between June 17, 2015, and May 30, 2016, we assessed 177 patients for inclusion. 61 eligible patients were randomly assigned to receive: saline placebo (n=5) or (2 ×) 2 µg ID93 + 2 µg GLA-SE (n=15) on days 0 and 56 (cohort 1); saline placebo (n=2) or (2 ×) 10 µg ID93 + 2 µg GLA-SE (n=5) on days 0 and 56 (cohort 2); saline placebo (n=5) on days 0, 28 and 56, or 2 µg ID93 + 5 µg GLA-SE (n=15) on days 0 and 56 and placebo injection on day 28, or (3 ×) 2 µg ID93 + 5 µg GLA-SE (n=14) on days 0, 28, and 56 (cohort 3). ID93 + GLA-SE induced robust and durable antibody responses and specific, polyfunctional CD4 T-cell responses to vaccine antigens. Two injections of the 2 µg ID93 + 5 µg GLA-SE dose induced antigen-specific IgG and CD4 T-cell responses that were significantly higher than those with placebo and persisted for the 6-month study duration. Mild to moderate injection site pain was reported after vaccination across all dose combinations, and induration and erythema in patients given 2 µg ID93 + 5 µg GLA-SE in two or three doses. One participant had grade 3 erythema and induration at the injection site. No vaccine-related serious adverse events were observed. INTERPRETATION: Vaccination with ID93 + GLA-SE was safe and immunogenic for all tested regimens. These data support further evaluation of ID93 + GLA-SE in therapeutic vaccination strategies to improve tuberculosis treatment outcomes. FUNDING: Wellcome Trust (102028/Z/13/Z).


Assuntos
Imunogenicidade da Vacina , Prevenção Secundária/métodos , Vacinas contra a Tuberculose/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/terapia , Tuberculose Pulmonar/terapia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Adolescente , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Relação Dose-Resposta Imunológica , Método Duplo-Cego , Feminino , Glucosídeos/administração & dosagem , Glucosídeos/efeitos adversos , Glucosídeos/imunologia , Humanos , Lipídeo A/administração & dosagem , Lipídeo A/efeitos adversos , Lipídeo A/imunologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Recidiva , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/sangue , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
2.
Vaccine ; 38(7): 1700-1707, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31899025

RESUMO

Healthy United States-based adult volunteers with no history of travel to leprosy-endemic countries were enrolled for the first-in-human evaluation of LepVax (LEP-F1 + GLA-SE). In total 24 volunteers participated in an open-labelclinicaltrial, with 21 receiving three injections of LepVax consisting of either 2 µg or 10 µg recombinantpolyprotein LEP-F1 mixed with 5 µg of the GLA-SE adjuvant formulation. LepVax doses were provided by intramuscular injection on Days 0, 28, and 56, and safety was evaluated for one year following the final injection. LepVaxwas safe and well tolerated at both antigen doses. Immunological analyses indicated that similar LEP-F1-specific antibody and Th1 cytokine secretion (IFN-γ, IL-2, TNF) were induced by each of the antigen doses evaluated within LepVax. This clinicaltrialof the first definedvaccinecandidate for leprosy demonstrates that LepVax is safe and immunogenic in healthy subjects and supports its advancement to testing in leprosy-endemic regions.


Assuntos
Vacinas Bacterianas/imunologia , Imunogenicidade da Vacina , Hanseníase/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Adulto , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Vacinas Bacterianas/efeitos adversos , Citocinas/imunologia , Relação Dose-Resposta Imunológica , Humanos , Injeções Intramusculares , Mycobacterium leprae
3.
NPJ Vaccines ; 3: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210819

RESUMO

Tuberculosis (TB) is the leading cause of infectious death worldwide. Development of improved TB vaccines that boost or replace BCG is a major global health goal. ID93 + GLA-SE is a fusion protein TB vaccine candidate combined with the Toll-like Receptor 4 agonist adjuvant, GLA-SE. We conducted a phase 1, randomized, double-blind, dose-escalation clinical trial to evaluate two dose levels of the ID93 antigen, administered intramuscularly alone or in combination with two dose levels of the GLA-SE adjuvant, in 60 BCG-naive, QuantiFERON-negative, healthy adults in the US (ClinicalTrials.gov identifier: NCT01599897). When administered as 3 injections, 28 days apart, all dose levels of ID93 alone and ID93 + GLA-SE demonstrated an acceptable safety profile. All regimens elicited vaccine-specific humoral and cellular responses. Compared with ID93 alone, vaccination with ID93 + GLA-SE elicited higher titers of ID93-specific antibodies, a preferential increase in IgG1 and IgG3 subclasses, and a multifaceted Fc-mediated effector function response. The addition of GLA-SE also enhanced the magnitude and polyfunctional cytokine profile of CD4+ T cells. The data demonstrate an acceptable safety profile and indicate that the GLA-SE adjuvant drives a functional humoral and T-helper 1 type cellular response.

4.
Clin Transl Immunology ; 5(11): e108, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27990284

RESUMO

Adjuvants are combined with vaccine antigens to enhance and modify immune responses, and have historically been primarily crude, undefined entities. Introducing toll-like receptor (TLR) ligands has led to a new generation of adjuvants, with TLR4 ligands being the most extensively used in human vaccines. The TLR4 crystal structures demonstrate extensive contact with their ligands and provide clues as to how they discriminate a broad array of molecules and activate or attenuate innate, as well as adaptive, responses resulting from these interactions. Leveraging this discerning ability, we made subtle chemical alterations to the structure of a synthetic monophosphoryl lipid-A molecule to produce SLA, a designer TLR4 ligand that had a number of desirable adjuvant effects. The SLA molecule stimulated human TLR4 and induced Th1 biasing cytokines and chemokines. On human cells, the activity of SLA plateaued at lower concentrations than the lipid A comparator, and induced cytokine profiles distinct from other known TLR4 agonists, indicating the potential for superior adjuvant performance. SLA was formulated in an oil-in-water emulsion, producing an adjuvant that elicited potent Th1-biased adaptive responses. This was verified using a recombinant Leishmania vaccine antigen, first in mice, then in a clinical study in which the antigen-specific Th1-biased responses observed in mice were recapitulated in humans. These results demonstrated that using structure-based approaches one can predictably design and produce modern adjuvant formulations for safe and effective human vaccines.

5.
Clin Transl Immunology ; 4(4): e35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26175894

RESUMO

Key antigens of Leishmania species identified in the context of host responses in Leishmania-exposed individuals from disease-endemic areas were prioritized for the development of a subunit vaccine against visceral leishmaniasis (VL), the most deadly form of leishmaniasis. Two Leishmania proteins-nucleoside hydrolase and a sterol 24-c-methyltransferase, each of which are protective in animal models of VL when properly adjuvanted- were produced as a single recombinant fusion protein NS (LEISH-F3) for ease of antigen production and broad coverage of a heterogeneous major histocompatibility complex population. When formulated with glucopyranosyl lipid A-stable oil-in-water nanoemulsion (GLA-SE), a Toll-like receptor 4 TH1 (T helper 1) promoting nanoemulsion adjuvant, the LEISH-F3 polyprotein induced potent protection against both L. donovani and L. infantum in mice, measured as significant reductions in liver parasite burdens. A robust immune response to each component of the vaccine with polyfunctional CD4 TH1 cell responses characterized by production of antigen-specific interferon-γ, tumor necrosis factor and interleukin-2 (IL-2), and low levels of IL-5 and IL-10 was induced in immunized mice. We also demonstrate that CD4 T cells, but not CD8 T cells, are sufficient for protection against L. donovani infection in immunized mice. Based on the sum of preclinical data, we prepared GMP materials and performed a phase 1 clinical study with LEISH-F3+GLA-SE in healthy, uninfected adults in the United States. The vaccine candidate was shown to be safe and induced a strong antigen-specific immune response, as evidenced by cytokine and immunoglobulin subclass data. These data provide a strong rationale for additional trials in Leishmania-endemic countries in populations vulnerable to VL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...