Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526394

RESUMO

PURPOSE: Liquid biopsy (LBx) for tumor profiling is increasingly used, but concerns remain regarding negative results. A lack of results may truly reflect tumor genomics, or it may be a false negative that would be clarified by tissue testing. A method of distinguishing between these scenarios could help clarify when follow-on tissue testing is valuable. EXPERIMENTAL DESIGN: Here we evaluate circulating tumor DNA (ctDNA) tumor fraction (TF), a quantification of ctDNA in LBx samples, for utility in identifying true negative results.We assessed concordance between LBx and tissue-based results, stratified by ctDNA TF, in a real-world genomic data set of paired samples across multiple disease types. We also evaluated the frequency of tissue results identifying driver alterations in lung cancer patients after negative LBx in a real-world clinicogenomic database. RESULTS: The positive percent agreement and negative predictive value between liquid and tissue samples for driver alterations increased from 63% and 66% for all samples to 98% and 97% in samples with ctDNA TF ≥1%. Among 505 lung cancer patients with no targetable driver alterations found by LBx who had subsequent tissue-based profiling, 37% had a driver, all of which had ctDNA TF <1%. CONCLUSIONS: Lung cancer patients with negative LBx and ctDNA TF ≥1% are unlikely to have a driver detected on confirmatory tissue testing; such informative negative results may benefit instead from prompt treatment initiation. Conversely, negative LBx with ctDNA TF <1% will commonly have a driver identified by follow-on tissue testing and should be prioritized for reflex testing.

3.
Front Oncol ; 11: 752918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737960

RESUMO

BACKGROUND: Sex is frequently underestimated as a prognostic biomarker in cancer. In this study, we evaluated a large cohort of patients and public datasets to determine the influence of sex on clinical outcomes, mutational status, and activation of immune pathways in different types of cancer. METHODS: A cohort of 13,619 Oncosalud-affiliated patients bearing sex-unrelated cancers was followed over a 20-year period. Hazard ratios (HRs) for death were estimated for female vs. male patients for each cancer type and then pooled in a meta-analysis to obtain an overall HR. In addition, the mutational status of the main actionable genes in melanoma (MEL), colorectal cancer (CRC), and lung cancer was compared between sexes. Finally, a gene set enrichment analysis (GSEA) of publicly available data was conducted, to assess differences in immune processes between sexes in MEL, gastric adenocarcinoma (GC), head and neck cancer (HNC), colon cancer (CC), liver cancer (LC), pancreatic cancer (PC), thyroid cancer (TC), and clear renal cell carcinoma (CCRCC). RESULTS: Overall, women had a decreased risk of death (HR = 0.73, CI95: 8%-42%), with improved overall survival (OS) in HNC, leukemia, lung cancer, lymphoma, MEL, multiple myeloma (MM), and non-melanoma skin cancer. Regarding the analysis of actionable mutations, only differences in EGFR alterations were observed (27.7% for men vs. 34.4% for women, p = 0.035). The number of differentially activated immune processes was higher in women with HNC, LC, CC, GC, MEL, PC, and TC and included cellular processes, responses to different stimuli, immune system development, immune response activation, multiorganism processes, and localization of immune cells. Only in CCRCC was a higher activation of immune pathways observed in men. CONCLUSIONS: The study shows an improved survival rate, increased activation of immune system pathways, and an enrichment of EGFR alterations in female patients of our cohort. Enhancement of the immune response in female cancer patients is a phenomenon that should be further explored to improve the efficacy of immunotherapy.

4.
Nat Rev Clin Oncol ; 18(1): 56-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918064

RESUMO

Upfront tumour genotyping is now considered an essential step in guiding treatment decision-making in the management of patients with advanced-stage non-small-cell lung cancer (NSCLC) in light of the ever-expanding toolbox of targeted therapies and immune-checkpoint inhibitors. However, genotyping of tumour biopsy samples is not feasible for all patients and, therefore, genomic analysis of circulating tumour DNA (ctDNA) has emerged as a compelling non-invasive option. Current guidelines universally recommend genotyping and support the use of ctDNA testing in certain settings, although they often omit the detail necessary for integrating these tests into clinical care on an individual basis. In this Perspective, we describe the rationale, promise and challenges associated with ctDNA-based NSCLC genotyping and suggest a framework for the implementation of these assays into routine clinical practice. We also offer considerations for the interpretation of ctDNA genotyping results, which, particularly when using next-generation sequencing panels, can be nuanced. Through the addition of this new approach to clinical practice, we propose that oncologists might finally be able to utilize effective genotyping in nearly all patients with advanced-stage NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Genômica/métodos , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Neoplasias Pulmonares/sangue
5.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878298

RESUMO

Non-small-cell lung cancer (NSCLC) represents roughly 85% of lung cancers, with an incidence that increases yearly across the world. The introduction in clinical practice of several new and more effective molecules has led to a consistent improvement in survival and quality of life in locally advanced and metastatic NSCLC. In particular, oncogenic drivers have indeed transformed the therapeutic algorithm for NSCLC. Nearly 25% of patients are diagnosed in an early stage when NSCLC is still amenable to radical surgery. In spite of this, five-year survival rates for fully resected early stage remains rather disappointing. Adjuvant chemotherapy has shown a modest survival benefit depending on the stage, but more than half of patients relapse. Given this need for improvement, over the last years different targeted therapies have been evaluated in early-stage NSCLC with no survival benefit in unselected patients. However, the identification of reliable predictive biomarkers to these agents in the metastatic setting, the design of molecularly-oriented studies, and the availability of novel potent and less toxic agents opened the way for a novel era in early stage NSCLC treatment. In this review, we will discuss the current landscape of targeted therapeutic options in early NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
6.
Cancers (Basel) ; 12(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156060

RESUMO

The objective of this research is to use metabolomic techniques to discover and validate plasma metabolite biomarkers for the diagnosis of early-stage non-small cell lung cancer (NSCLC). The study included plasma samples from 156 patients with biopsy-confirmed NSCLC along with age and gender-matched plasma samples from 60 healthy controls. A fully quantitative targeted mass spectrometry (MS) analysis (targeting 138 metabolites) was performed on all samples. The sample set was split into a discovery set and validation set. Metabolite concentration data, clinical data, and smoking history were used to determine optimal sets of biomarkers and optimal regression models for identifying different stages of NSCLC using the discovery sets. The same biomarkers and regression models were used and assessed on the validation models. Univariate and multivariate statistical analysis identified ß-hydroxybutyric acid, LysoPC 20:3, PC ae C40:6, citric acid, and fumaric acid as being significantly different between healthy controls and stage I/II NSCLC. Robust predictive models with areas under the curve (AUC) > 0.9 were developed and validated using these metabolites and other, easily measured clinical data for detecting different stages of NSCLC. This study successfully identified and validated a simple, high-performing, metabolite-based test for detecting early stage (I/II) NSCLC patients in plasma. While promising, further validation on larger and more diverse cohorts is still required.

7.
Cell Oncol (Dordr) ; 42(3): 261-273, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968324

RESUMO

BACKGROUND: Small-cell lung cancer (SCLC) is an aggressive disease with still limited therapeutic options. Despite being both a chemo- and radiation-sensitive malignancy, SCLC recurrence occurs in most cases and negatively impacts patients' prognosis. Over the last few years, a deeper understanding of SCLC molecular aberrations has led to the identification of Notch pathway deregulation as a crucial event in SCLC tumorigenesis, disease progression and chemoresistance. In particular, the delta-like protein 3 (DLL3), a Notch inhibitory ligand whose expression is directly related to the key neuroendocrine transcription factor ASCL1, was found to be expressed in ~85% of SCLCs, while it exhibits minimal to absent surface expression in normal lungs. DLL3 thus represents an appealing novel biomarker as well as a potential target in SCLC. CONCLUSIONS: The first DLL3-targeted antibody-drug conjugate rovalpituzumab tesirine (Rova-T, SC16LD6.5) has shown promising results in terms of efficacy and safety for the management of extensive SCLC, supporting further studies on this novel therapeutic approach that combines specific SCLC targeting with the cell-killing ability of a pyrrolobenzodiazepine dimer. In the present review, we discuss currently available evidence on the biological role of Notch signaling in SCLC from early preclinical findings to current and future clinical implications.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Benzodiazepinonas/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteínas de Membrana/antagonistas & inibidores , Prognóstico , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...