Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36635937

RESUMO

Multiple recent studies have shown that motor activity greatly impacts the activity of primary sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still unclear. Here, we dissect how these behavior signals are broadcast to different layers and areas of the visual cortex. To do so, we leveraged a standardized and spontaneous behavioral fidget event in passively viewing mice. Importantly, this behavior event had no relevance to any ongoing task allowing us to compare its neuronal correlates with visually relevant behaviors (e.g., running). A large two-photon Ca2+ imaging database of neuronal responses uncovered four neural response types during fidgets that were consistent in their proportion and response patterns across all visual areas and layers of the visual cortex. Indeed, the layer and area identity could not be decoded above chance level based only on neuronal recordings. In contrast to running behavior, fidget evoked neural responses that were independent to visual processing. The broad availability of visually orthogonal standardized behavior signals could be a key component in how the cortex selects, learns and binds local sensory information with motor outputs. Contrary to behaviorally relevant motor outputs, irrelevant motor signals could project to separate local neural subspaces.


Assuntos
Córtex Visual , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos
2.
PLoS Comput Biol ; 17(9): e1009246, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534203

RESUMO

The maintenance of short-term memories is critical for survival in a dynamically changing world. Previous studies suggest that this memory can be stored in the form of persistent neural activity or using a synaptic mechanism, such as with short-term plasticity. Here, we compare the predictions of these two mechanisms to neural and behavioral measurements in a visual change detection task. Mice were trained to respond to changes in a repeated sequence of natural images while neural activity was recorded using two-photon calcium imaging. We also trained two types of artificial neural networks on the same change detection task as the mice. Following fixed pre-processing using a pretrained convolutional neural network, either a recurrent neural network (RNN) or a feedforward neural network with short-term synaptic depression (STPNet) was trained to the same level of performance as the mice. While both networks are able to learn the task, the STPNet model contains units whose activity are more similar to the in vivo data and produces errors which are more similar to the mice. When images are omitted, an unexpected perturbation which was absent during training, mice often do not respond to the omission but are more likely to respond to the subsequent image. Unlike the RNN model, STPNet produces a similar pattern of behavior. These results suggest that simple neural adaptation mechanisms may serve as an important bottom-up memory signal in this task, which can be used by downstream areas in the decision-making process.


Assuntos
Adaptação Fisiológica , Memória de Curto Prazo , Estimulação Luminosa , Percepção Visual , Animais , Comportamento Animal , Biologia Computacional/métodos , Tomada de Decisões , Camundongos , Redes Neurais de Computação , Análise e Desempenho de Tarefas
3.
Elife ; 92020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101169

RESUMO

Cortical circuits can flexibly change with experience and learning, but the effects on specific cell types, including distinct inhibitory types, are not well understood. Here we investigated how excitatory and VIP inhibitory cells in layer 2/3 of mouse visual cortex were impacted by visual experience in the context of a behavioral task. Mice learned a visual change detection task with a set of eight natural scene images. Subsequently, during 2-photon imaging experiments, mice performed the task with these familiar images and three sets of novel images. Strikingly, the temporal dynamics of VIP activity differed markedly between novel and familiar images: VIP cells were stimulus-driven by novel images but were suppressed by familiar stimuli and showed ramping activity when expected stimuli were omitted from a temporally predictable sequence. This prominent change in VIP activity suggests that these cells may adopt different modes of processing under novel versus familiar conditions.


Assuntos
Peptídeo Intestinal Vasoativo/metabolismo , Animais , Camundongos , Análise e Desempenho de Tarefas , Córtex Visual/metabolismo , Córtex Visual/fisiologia
4.
Nat Neurosci ; 23(1): 138-151, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844315

RESUMO

To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes the cortical activity of nearly 60,000 neurons from six visual areas, four layers, and 12 transgenic mouse lines in a total of 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons on the basis of joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals.


Assuntos
Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Animais , Conjuntos de Dados como Assunto , Camundongos
5.
PLoS One ; 14(5): e0213924, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31042712

RESUMO

Visual cortex is organized into discrete sub-regions or areas that are arranged into a hierarchy and serves different functions in the processing of visual information. In retinotopic maps of mouse cortex, there appear to be substantial mouse-to-mouse differences in visual area location, size and shape. Here we quantify the biological variation in the size, shape and locations of 11 visual areas in the mouse, after separating biological variation and measurement noise. We find that there is biological variation in the locations and sizes of visual areas.


Assuntos
Córtex Visual/anatomia & histologia , Animais , Mapeamento Encefálico , Masculino , Camundongos , Córtex Visual/fisiologia , Vias Visuais/fisiologia
6.
Disasters ; 43(2): 240-260, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30537279

RESUMO

Despite sustained scholarly interest in post-conflict states, there has not been a thorough review and analysis of associated methodology and the challenges of conducting research in these contexts. Addressing this gap, this paper directs attention to the particular effects of these settings on access and data quality and their ramifications for the resulting scholarship. It assesses the intrinsic challenges of performing fieldwork in these environments, drawing on both relevant social science literature and the authors' experiences of carrying out research in Afghanistan and Timor-Leste. The study demonstrates that the post-conflict environment moulds research design and, consequently, influences how questions are answered as well as the questions asked. Moreover, it highlights ways to mitigate these issues. This work is of relevance to scholars planning to engage in field research and to researchers reflecting upon their work, as well as to policymakers who are considering undertaking programmes or commissioning research in post-conflict areas.


Assuntos
Conflitos Armados , Pesquisa/organização & administração , Acesso à Informação , Afeganistão , Confiabilidade dos Dados , Humanos , Timor-Leste
7.
eNeuro ; 4(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932809

RESUMO

Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/fisiopatologia , Epilepsia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/fisiologia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Doxiciclina/farmacologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Integrases , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...