Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 26(3): 690-703, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636099

RESUMO

PURPOSE: Peripheral T-cell lymphomas are clinically aggressive and usually fatal, as few complete or durable remissions are achieved with currently available therapies. Recent evidence supports a critical role for lymphoma-associated macrophages during T-cell lymphoma progression, but the specific signals involved in the cross-talk between malignant T cells and their microenvironment are poorly understood. Colony-stimulator factor 1 receptor (CSF1R, CD115) is required for the homeostatic survival of tissue-resident macrophages. Interestingly, its aberrant expression has been reported in a subset of tumors. In this article, we evaluated its expression and oncogenic role in T-cell lymphomas. EXPERIMENTAL DESIGN: Loss-of-function studies, including pharmacologic inhibition with a clinically available tyrosine kinase inhibitor, pexidartinib, were performed in multiple in vitro and in vivo models. In addition, proteomic and genomic screenings were performed to discover signaling pathways that are activated downstream of CSF1R signaling. RESULTS: We observed that CSF1R is aberrantly expressed in many T-cell lymphomas, including a significant number of peripheral and cutaneous T-cell lymphomas. Colony-stimulating factor 1 (CSF1), in an autocrine or paracrine-dependent manner, leads to CSF1R autophosphorylation and activation in malignant T cells. Furthermore, CSF1R signaling was associated with significant changes in gene expression and in the phosphoproteome, implicating PI3K/AKT/mTOR in CSF1R-mediated T-cell lymphoma growth. We also demonstrated that inhibition of CSF1R in vivo and in vitro models is associated with decreased T-cell lymphoma growth. CONCLUSIONS: Collectively, these findings implicate CSF1R in T-cell lymphomagenesis and have significant therapeutic implications.


Assuntos
Aminopiridinas/farmacologia , Linfoma de Células T Periférico/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirróis/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Semin Hematol ; 56(1): 52-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30573045

RESUMO

Mass spectrometry-based techniques now enable the unbiased identification of proteins in complex mixtures including proteins isolated from cells and tissues. These powerful tools permit near-complete annotation of proteins expressed in cells, tissues or organs. Further, these techniques permit the interrogation of the numerous posttranslational modifications that govern cell-specific responses to signaling cues and underlie the functional heterogeneity of cellular composition and contribute to biological complexity. Parallel developments in technologies such as mass cytometry and multicolor ion-beam imaging which permit multi-parameter detection of numerous proteins at the single-cell and in situ level respectively, are poised to radically impact our understanding of the functional and translational importance of proteins in hematologic conditions. Importantly, the field of proteomics is poised to realize the immensely powerful opportunities in integration with genomic information that is being discovered at an unprecedented pace for many hematologic conditions.


Assuntos
Genômica/métodos , Hematologia/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Humanos
3.
Nature ; 553(7687): 222-227, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323298

RESUMO

Chromosomal translocations that generate in-frame oncogenic gene fusions are notable examples of the success of targeted cancer therapies. We have previously described gene fusions of FGFR3-TACC3 (F3-T3) in 3% of human glioblastoma cases. Subsequent studies have reported similar frequencies of F3-T3 in many other cancers, indicating that F3-T3 is a commonly occuring fusion across all tumour types. F3-T3 fusions are potent oncogenes that confer sensitivity to FGFR inhibitors, but the downstream oncogenic signalling pathways remain unknown. Here we show that human tumours with F3-T3 fusions cluster within transcriptional subgroups that are characterized by the activation of mitochondrial functions. F3-T3 activates oxidative phosphorylation and mitochondrial biogenesis and induces sensitivity to inhibitors of oxidative metabolism. Phosphorylation of the phosphopeptide PIN4 is an intermediate step in the signalling pathway of the activation of mitochondrial metabolism. The F3-T3-PIN4 axis triggers the biogenesis of peroxisomes and the synthesis of new proteins. The anabolic response converges on the PGC1α coactivator through the production of intracellular reactive oxygen species, which enables mitochondrial respiration and tumour growth. These data illustrate the oncogenic circuit engaged by F3-T3 and show that F3-T3-positive tumours rely on mitochondrial respiration, highlighting this pathway as a therapeutic opportunity for the treatment of tumours with F3-T3 fusions. We also provide insights into the genetic alterations that initiate the chain of metabolic responses that drive mitochondrial metabolism in cancer.


Assuntos
Respiração Celular , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fosforilação , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 114(25): 6581-6586, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28607076

RESUMO

Identification of biomarkers and therapeutic targets is a critical goal of precision medicine. N-glycoproteins are a particularly attractive class of proteins that constitute potential cancer biomarkers and therapeutic targets for small molecules, antibodies, and cellular therapies. Using mass spectrometry (MS), we generated a compendium of 1,091 N-glycoproteins (from 40 human primary lymphomas and cell lines). Hierarchical clustering revealed distinct subtype signatures that included several subtype-specific biomarkers. Orthogonal immunological studies in 671 primary lymphoma tissue biopsies and 32 lymphoma-derived cell lines corroborated MS data. In anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), integration of N-glycoproteomics and transcriptome sequencing revealed an ALK-regulated cytokine/receptor signaling network, including vulnerabilities corroborated by a genome-wide clustered regularly interspaced short palindromic screen. Functional targeting of IL-31 receptor ß, an ALCL-enriched and ALK-regulated N-glycoprotein in this network, abrogated ALK+ALCL growth in vitro and in vivo. Our results highlight the utility of functional proteogenomic approaches for discovery of cancer biomarkers and therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Linfoma/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Humanos , Proteogenômica/métodos , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética
5.
Oncotarget ; 8(69): 113895-113909, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371955

RESUMO

We recently demonstrated that obinutuzumab (GA101), a novel glycoengineered type II CD20 Ab compared to rituximab (RTX) mediates significantly enhanced antibody-dependent cell cytotoxicity (ADCC) in vitro and increased overall survival in a Burkitt lymphoma (BL) xenograft non-obese diabetic severe combined immunodeficiency gamma (NSG) model. In this study we compared the phosphoproteomic changes by pathway analysis following obinutuzumab vs RTX against RTX-sensitive (Raji) and -resistant BL (Raji4RH). Phosphoproteomic analyses were performed by mass-spectrometry (MS)-based label-free quantitative phosphoproteomic profiling. We demonstrated that 418 proteins in Raji and 377 proteins in Raji 4RH, were differentially phosphorylated (>1.5-fold) after obinutuzumab vs. RTX. Proteins that were significantly differentially phosphorylated included the B cell antigen receptor (BCR) (PLCG2, BTK and GSK3B), Fc gamma phagocytosis (FCRG2B, MAPK1, PLCG2 and RAF1), and natural killer cell-mediated cytotoxicity (MAPK1, RAF1, PLCG2 and MAPK3) signaling pathways. Differential phosphorylation of BCR or cytotoxicity pathway proteins revealed significant up-regulation of BTK, PLCY2 and ERK1/RAF1 after obinutuzumab compared to RTX. Silencing of PLCG2 in the BCR and MAPK1 in the cytotoxicity pathway significantly increased BL proliferation and decreased BL cytotoxicity after obinutuzumab compared to RTX. These results in combination with our previous results demonstrating a significant improvement in in vitro BL cytotoxicity and in vivo BL survival by obinutuzumab compared to RTX may in part be due to differential effects on selected BL protein signaling pathways.

6.
Nat Commun ; 6: 8470, 2015 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-26415585

RESUMO

Sézary syndrome (SS) is an aggressive leukaemia of mature T cells with poor prognosis and limited options for targeted therapies. The comprehensive genetic alterations underlying the pathogenesis of SS are unknown. Here we integrate whole-genome sequencing (n=6), whole-exome sequencing (n=66) and array comparative genomic hybridization-based copy-number analysis (n=80) of primary SS samples. We identify previously unknown recurrent loss-of-function aberrations targeting members of the chromatin remodelling/histone modification and trithorax families, including ARID1A in which functional loss from nonsense and frameshift mutations and/or targeted deletions is observed in 40.3% of SS genomes. We also identify recurrent gain-of-function mutations targeting PLCG1 (9%) and JAK1, JAK3, STAT3 and STAT5B (JAK/STAT total ∼11%). Functional studies reveal sensitivity of JAK1-mutated primary SS cells to JAK inhibitor treatment. These results highlight the complex genomic landscape of SS and a role for inhibition of JAK/STAT pathways for the treatment of SS.


Assuntos
Epigênese Genética/genética , Janus Quinases/genética , Fatores de Transcrição STAT/genética , Síndrome de Sézary/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ciclo Celular/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Exoma , Genômica , Guanilato Ciclase/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Células Jurkat , Família Multigênica , Proteínas de Neoplasias/genética , Fosfolipase C gama/genética , Proteínas ras/genética
7.
Cancer Res ; 75(13): 2600-2606, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25931286

RESUMO

Inverted sinonasal papilloma (ISP) is a locally aggressive neoplasm associated with sinonasal squamous cell carcinoma (SNSCC) in 10% to 25% of cases. To date, no recurrent mutations have been identified in ISP or SNSCC. Using targeted next-generation sequencing and Sanger sequencing, we identified activating EGFR mutations in 88% of ISP and 77% of ISP-associated SNSCC. Identical EGFR genotypes were found in matched pairs of ISP and associated SNSCC, providing the first genetic evidence of a biologic link between these tumors. EGFR mutations were not identified in exophytic or oncocytic papillomas or non-ISP-associated SNSCC, suggesting that the ISP/SNSCC spectrum is biologically distinct among sinonasal squamous tumors. Patients with ISP harboring EGFR mutations also exhibited an increased progression-free survival compared with those with wild-type EGFR. Finally, treatment of ISP-associated carcinoma cells with irreversible EGFR inhibitors resulted in inactivation of EGFR signaling and growth inhibition. These findings implicate a prominent role for activating EGFR mutations in the pathogenesis of ISP and associated SNSCC and rationalize consideration of irreversible EGFR inhibitors in the therapy of these tumors.


Assuntos
Carcinoma de Células Escamosas/genética , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/genética , Mutação , Papiloma Invertido/genética , Neoplasias dos Seios Paranasais/genética , Idoso , Sequência de Aminoácidos , Carcinoma de Células Escamosas/enzimologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/enzimologia , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Papiloma Invertido/enzimologia , Neoplasias dos Seios Paranasais/enzimologia , Análise de Sequência de DNA , Carcinoma de Células Escamosas de Cabeça e Pescoço
8.
Biomark Cancer ; 7(Suppl 2): 33-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26917979
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...