Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 577-592.e23, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38042151

RESUMO

Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.


Assuntos
Memória de Curto Prazo , Canais de Potássio , Ratos , Animais , Humanos , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Encéfalo/metabolismo
2.
Purinergic Signal ; 19(3): 467-479, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36944825

RESUMO

Extracellular adenosine 5'-triphosphate (ATP) acts as an autocrine and paracrine agent, the actions of which on affected cells are mediated by P2 receptors (P2R), which include trans cell-membrane cationic channels (P2XRs), and G protein coupled receptors (P2YRs). The mammalian P2X receptors form homotrimeric or heterotrimeric cationic channels, each of which contains three ATP-binding sites. There are seven homotrimeric P2X receptors (P2X1-7) and three heteromeric (P2X2/P2X3, P2X4/P2X6, P2X1/P2X5). In the lungs and airways, ATP activates P2X3 and P2X2/3 receptors (P2X3R, P2X2/3R, respectively) localized on vagal sensory nerve terminals resulting in bronchoconstriction, and cough, and probably also localized release of pro-inflammatory neuropeptides via the axon reflex. Currently, several P2X3R and P2X2/3R antagonists are being developed as drug-candidates for the treatment of chronic cough. This report presents the receptor affinity data of a novel water-soluble small molecule, DT-0111, that acts as a selective P2X3R antagonist.


Assuntos
Tosse , Receptores Purinérgicos P2X3 , Animais , Antagonistas do Receptor Purinérgico P2X/farmacologia , Trifosfato de Adenosina/metabolismo , Pulmão/metabolismo , Receptores Purinérgicos P2X2 , Mamíferos/metabolismo
3.
Cell Death Dis ; 13(7): 595, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817766

RESUMO

Age-related hearing loss (ARHL) is the most common sensory impairment mainly caused by degeneration of sensory hair cells in the cochlea with no causal medical treatment available. Auditory function and sensory hair cell survival critically depend on the Kv7.4 (KCNQ4) channel, a voltage-gated potassium channel expressed in outer hair cells (OHCs), with its impaired function or reduced activity previously associated with ARHL. Here, we investigated the effect of a potent small-molecule Kv7.4 agonist on ARHL in the senescence-accelerated mouse prone 8 (SAMP8) model. For the first time in vivo, we show that Kv7.4 activation can significantly reduce age-related threshold shifts of auditory brainstem responses as well as OHC loss in the SAMP8 model. Pharmacological activation of Kv7.4 thus holds great potential as a therapeutic approach for ARHL as well as other hearing impairments related to Kv7.4 function.


Assuntos
Células Ciliadas Auditivas Externas , Perda Auditiva , Animais , Cóclea , Modelos Animais de Doenças , Audição , Perda Auditiva/tratamento farmacológico , Camundongos , Canais de Potássio
4.
PLoS One ; 16(1): e0245397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434240

RESUMO

The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-ß1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.


Assuntos
Diafragma/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Animais , Diafragma/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Transformador beta1/análise , Ultrassonografia
5.
Methods Mol Biol ; 2188: 311-330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33119859

RESUMO

Automated patch clamping (APC) has been used for almost two decades to increase the throughput of electrophysiological measurements, especially in preclinical safety screening of drug compounds. Typically, cells are suctioned onto holes in planar surfaces and a stronger subsequent suction allows access to a whole cell configuration for electrical measurement of ion channel activity. The development of optogenetic tools over a wide range of wavelengths (UV to IR) provides powerful tools for improving spatiotemporal control of in vivo and in vitro experiments and is emerging as a powerful means of investigating cell networks (neuronal), single cell transduction, and subcellular pathways.Combining APC and optogenetic tools paves the way for improved investigation and control of cell kinetics and provides the opportunity for collecting robust data for new and exciting applications and therapeutic areas. Here, we present an APC optogenetics capability on the Qube Opto 384 system including experiments on light activated ion channels and photoactivated ligands.


Assuntos
Optogenética/métodos , Técnicas de Patch-Clamp/métodos , Técnicas de Cultura de Células/métodos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Luz
6.
SLAS Discov ; 26(3): 460-469, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33334229

RESUMO

Voltage-gated ion channels produce rapid transmembrane currents responsible for action potential generation and propagation at the neuronal, muscular, and cardiac levels. They represent attractive clinical targets because their altered firing frequency is often the hallmark of pathological signaling leading to several neuromuscular disorders. Therefore, a method to study their functioning upon repeated triggers at different frequencies is desired to develop new drug molecules selectively targeting pathological phenotype. Optogenetics provides powerful tools for millisecond switch of cellular excitability in contactless, physiological, and low-cost settings. Nevertheless, its application to large-scale drug-screening operations is still limited by long processing time (due to sequential well read), rigid flashing pattern, lack of online compound addition, or high consumable costs of existing methods. Here, we developed a method that enables simultaneous analysis of 384-well plates with optical pacing, fluorescence recording, and liquid injection. We used our method to deliver programmable millisecond-switched depolarization through light-activated opsin in concomitance with continuous optical recording by a fluorescent indicator. We obtained 384-well pacing of recombinant voltage-activated sodium or calcium channels, as well as induced pluripotent stem cell (iPSC)-derived cardiomyocytes, in all-optical parallel settings. Furthermore, we demonstrated the use-dependent behavior of known ion channel blockers by optogenetic pacing at normal or pathological firing frequencies, obtaining very good signal reproducibility and accordance with electrophysiology data. Our method provides a novel physiological approach to study frequency-dependent drug behavior using reversible programmable triggers. The all-optical parallel settings combined with contained operational costs make our method particularly suited for large-scale drug-screening campaigns as well as cardiac liability studies.


Assuntos
Bioensaio , Bloqueadores dos Canais de Cálcio/farmacologia , Optogenética/métodos , Bloqueadores dos Canais de Potássio/farmacologia , Proteínas de Algas/antagonistas & inibidores , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Chlamydomonas reinhardtii , Corantes Fluorescentes/química , Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Imagem Óptica/métodos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Rodopsina/antagonistas & inibidores , Rodopsina/genética , Rodopsina/metabolismo
9.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331416

RESUMO

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.


Assuntos
Canalopatias/etiologia , Canalopatias/terapia , Predisposição Genética para Doença , Canal de Potássio Kv1.1/genética , Mutação , Alelos , Animais , Canalopatias/diagnóstico , Canalopatias/metabolismo , Gerenciamento Clínico , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/metabolismo , Terapia de Alvo Molecular , Fenótipo , Relação Estrutura-Atividade
10.
Transl Res ; 204: 82-99, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30347179

RESUMO

Taurine is an amino acid abundantly present in heart and skeletal muscle. Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to skeletal muscle wasting and heart failure. An altered taurine metabolism has been described in dystrophic animals and short-term taurine administration exerts promising amelioration of early muscular alterations in the mdx mouse model of DMD. To reinforce the therapeutic and nutraceutical taurine potential in DMD, we evaluated the effects of a long-term treatment on cardiac and skeletal muscle function of mdx mice in a later disease stage. Taurine was administered in drinking water (1 g/kg/day) to wt and mdx mice for 6 months, starting at 6 months of age. Ultrasonography evaluation of heart and hind limb was performed, in parallel with in vivo and ex vivo functional tests and biochemical, histological and gene expression analyses. 12-month-old mdx mice showed a significant worsening of left ventricular function parameters (shortening fraction, ejection fraction, stroke volume), which were significantly counteracted by the taurine treatment. In parallel, histologic signs of damage were reduced by taurine along with the expression of proinflammatory myocardial IL-6. Interestingly, no effects were observed on hind limb volume and percentage of vascularization or on in vivo and ex vivo muscle functional parameters, suggesting a tissue-specific action of taurine in relation to the disease phase. A trend toward increase in taurine was found in heart and quadriceps from treated animals, paralleled by a slight decrease in mdx mice plasma. Our study provides evidences that taurine can prevent late heart dysfunction in mdx mice, further corroborating the interest on this amino acid toward clinical trials.


Assuntos
Distrofia Muscular de Duchenne/tratamento farmacológico , Taurina/uso terapêutico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Ingestão de Líquidos/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/fisiopatologia , Taurina/farmacologia
11.
Data Brief ; 18: 555-575, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900212

RESUMO

Here we present original data related to the research paper entitled "Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of Key Metabolic and Contractile Proteins after chronic exercise and the potential modulation by anti-oxidant compounds" (Gamberi et al., 2018) [1]. The dystrophin-deficient mdx mouse is the most common animal model for Duchenne muscular dystrophy. The mdx mice phenotype of the disorder is milder than in human sufferers and it can be worsened by chronic treadmill exercise. Apocynin and taurine are two antioxidant compounds proved to be beneficial on some pathology related parameters (Schröder and Schoser, 2009) [2]. This article reports the detailed proteomic data on protein abundance alterations, in tibialis anterior muscle of mdx mice, induced by chronic exercise protocol. A selected group of mdx mice was also treated with apocynin and taurine during this protocol. Detailed MS data, comparison between mdx vs wild type, exercised mdx vs wild type, and complete analysis of spot variation are provided. Furthermore, in wild type mice subjected to the same exercise protocol, the abundance of key proteins, resulted modified in exercised mdx, were analyzed by western blot.

12.
Biochem Pharmacol ; 154: 89-103, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684379

RESUMO

The pharmacological stimulation of AMP-activated protein kinase (AMPK) via metabolic enhancers has been proposed as potential therapeutic strategy for Duchenne muscular dystrophy (DMD). Metformin, a widely-prescribed anti-hyperglycemic drug which activates AMPK via mitochondrial respiratory chain, has been recently tested in DMD patients in synergy with nitric oxide (NO)-precursors, with encouraging results. However, preclinical data supporting the use of metformin in DMD are still poor, and its actions on skeletal muscle appear controversial. Therefore, we investigated the effects of a long-term treatment with metformin (200 mg/kg/day in drinking water, for 20 weeks) in the exercised mdx mouse model, characterized by a severe mechanical-metabolic maladaptation. Metformin significantly ameliorated histopathology in mdx gastrocnemius muscle, in parallel reducing TGF-ß1 with a recovery score (r.s) of 106%; this was accompanied by a decreased plasma matrix-metalloproteinase-9 (r.s. 43%). In addition, metformin significantly increased mdx diaphragm twitch and tetanic tension ex vivo (r.s. 44% and 36%, respectively), in spite of minor effects on in vivo weakness. However, no clear protective actions on dystrophic muscle metabolism were observed, as shown by the poor metformin effect on AMPK activation measured by western blot, on the expression of mechanical-metabolic response genes analyzed by qPCR, and by the lack of fast-to-slow fiber-type-shift assessed by SDH staining in tibialis anterior muscle. Similar results were obtained in the milder phenotype of sedentary mdx mice. The lack of metabolic effects could be, at least partly, due to metformin inability to increase low mdx muscle levels of l-arginine, l-citrulline and taurine, found by HPLC. Our findings encourage to explore alternative, metabolism-independent mechanisms of action to differently repurpose metformin in DMD, supporting its therapeutic combination with NO-sources.


Assuntos
Hipoglicemiantes/administração & dosagem , Contração Isométrica/efeitos dos fármacos , Metformina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Contração Isométrica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Técnicas de Cultura de Órgãos , Resultado do Tratamento
13.
J Proteomics ; 170: 43-58, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28966053

RESUMO

Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. In the present study, we describe, the pattern of differentially abundant spots that is associated to the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different abundance between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories. Interestingly exercise induced an increase of typical fast twitch fiber proteins (Troponin T fast skeletal muscle, Troponin I fast skeletal muscle and Myozenin-1) combined with an increase of several glycolytic enzymes. Concerning energy transfer, Adenylate kinase, showed a marked decrease when compared with non-exercised mdx. The decline of this enzyme correlates with increased Creatin kinase enzyme, suggesting that a compensatory energy metabolism mechanism could be activated in mdx mouse skeletal muscle following exercise. In addition, we analysed muscles from exercised mdx mice treated with two natural anti-oxidant compounds, apocynin and taurine, that in our previous study, were proved to be beneficial on some pathology related parameters, and we showed that these compounds can counteract exercise-induced changes in the abundance of several proteins. SIGNIFICANCE: Mdx mouse model of Duchenne muscular dystrophy shows a phenotype of the disorder milder than in human sufferers. This phenotype can be worsened by a different protocols of chronic exercise. These protocols can mimic the muscle progressive damage observed in humans, can allow studying the effects of inadequate training on dystrophic muscles and have been largely used to assess the ability of a drug to reduce the damage induced by exercise. In this study, we describe for the first time, the pattern of protein variation associated with the worsening of dystrophy phenotype induced by chronic exercise. Our proteomic analysis pointed out 34 protein spots with different amount between sedentary and exercised mdx mice. These proteins belong mostly to glucose metabolism, energy production and sarcomere structure categories and their variation indicates that mdx exercised muscle are not able to carry out the metabolic changes associated to fast-to-slow transition typically observed in aerobically trained muscle.


Assuntos
Antioxidantes/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Condicionamento Físico Animal , Proteoma/metabolismo , Animais , Camundongos , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Proteoma/genética
14.
J Appl Physiol (1985) ; 122(4): 828-843, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057817

RESUMO

Progressive weakness is a typical feature of Duchenne muscular dystrophy (DMD) patients and is exacerbated in the benign mdx mouse model by in vivo treadmill exercise. We hypothesized a different threshold for functional adaptation of mdx muscles in response to the duration of the exercise protocol. In vivo weakness was confirmed by grip strength after 4, 8, and 12 wk of exercise in mdx mice. Torque measurements revealed that exercise-related weakness in mdx mice correlated with the duration of the protocol, while wild-type (WT) mice were stronger. Twitch and tetanic forces of isolated diaphragm and extensor digitorum longus (EDL) muscles were lower in mdx compared with WT mice. In mdx, both muscle types exhibited greater weakness after a single exercise bout, but only in EDL after a long exercise protocol. As opposite to WT muscles, mdx EDL ones did not show any exercise-induced adaptations against eccentric contraction force drop. qRT-PCR analysis confirmed the maladaptation of genes involved in metabolic and structural remodeling, while damage-related genes remained significantly upregulated and angiogenesis impaired. Phosphorylated AMP kinase level increased only in exercised WT muscle. The severe histopathology and the high levels of muscular TGF-ß1 and of plasma matrix metalloproteinase-9 confirmed the persistence of muscle damage in mdx mice. Therefore, dystrophic muscles showed a partial degree of functional adaptation to chronic exercise, although not sufficient to overcome weakness nor signs of damage. The improved understanding of the complex mechanisms underlying maladaptation of dystrophic muscle paves the way to a better managment of DMD patients.NEW & NOTEWORTHY We focused on the adaptation/maladaptation of dystrophic mdx mouse muscles to a standard protocol of exercise to provide guidance in the development of more effective drug and physical therapies in Duchenne muscular dystrophy. The mdx muscles showed a modest functional adaptation to chronic exercise, but it was not sufficient to overcome the progressive in vivo weakness, nor to counter signs of muscle damage. Therefore, a complex involvement of multiple systems underlies the maladaptive response of dystrophic muscle.


Assuntos
Adaptação Fisiológica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Condicionamento Físico Animal/fisiologia , Adenilato Quinase/metabolismo , Animais , Diafragma/metabolismo , Diafragma/fisiopatologia , Modelos Animais de Doenças , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Força Muscular/fisiologia , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Torque , Regulação para Cima/fisiologia
15.
Front Pharmacol ; 8: 907, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379434

RESUMO

Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.

16.
Age (Dordr) ; 36(1): 73-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23716142

RESUMO

Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Óleos de Plantas/farmacologia , Administração Oral , Animais , Antioxidantes/administração & dosagem , Encéfalo/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Ácido Gálico/administração & dosagem , Ácido Gálico/farmacologia , Ácido Homovanílico/administração & dosagem , Ácido Homovanílico/farmacologia , Masculino , Malondialdeído/metabolismo , Força Muscular/efeitos dos fármacos , Azeite de Oliva , Técnicas de Patch-Clamp , Álcool Feniletílico/administração & dosagem , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Óleos de Plantas/administração & dosagem , Canais de Potássio/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Sarcolema/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
17.
ChemMedChem ; 7(10): 1775-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22473914

RESUMO

Two voltage-dependent potassium channels, Kv1.1 (KCNA1) and Kv1.2 (KCNA2), are found to co-localize at the juxtaparanodal region of axons throughout the nervous system and are known to co-assemble in heteromultimeric channels, most likely in the form of the concatemer Kv1.1-1.2((3)) . Loss of the myelin sheath, as is observed in multiple sclerosis, uncovers the juxtaparanodal region of nodes of Ranvier in myelinated axons leading to potassium conductance, resulting in loss of nerve conduction. The selective blocking of these Kv channels is therefore a promising approach to restore nerve conduction and function. In the present study, we searched for novel inhibitors of Kv1.1-1.2((3)) by combining a virtual screening protocol and electrophysiological measurements on a concatemer Kv1.1-1.2((3)) stably expressed in Chinese hamster ovary K1 (CHO-K1) cells. The combined use of four popular virtual screening approaches (eHiTS, FlexX, Glide, and Autodock-Vina) led to the identification of several compounds as potential inhibitors of the Kv1.1-1.2((3)) channel. From 89 electrophysiologically evaluated compounds, 14 novel compounds were found to inhibit the current carried by Kv1.1-1.2((3)) channels by more than 80 % at 10 µM. Accordingly, the IC(50) values calculated from concentration-response curve titrations ranged from 0.6 to 6 µM. Two of these compounds exhibited at least 30-fold higher potency in inhibition of Kv1.1-1.2((3)) than they showed in inhibition of a set of cardiac ion channels (hERG, Nav1.5, and Cav1.2), resulting in a profile of selectivity and cardiac safety. The results presented herein provide a promising basis for the development of novel selective ion channel inhibitors, with a dramatically lower demand in terms of experimental time, effort, and cost than a sole high-throughput screening approach of large compound libraries.


Assuntos
Canal de Potássio Kv1.1/antagonistas & inibidores , Canal de Potássio Kv1.2/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/química , Animais , Automação , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Ensaios de Triagem em Larga Escala , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.2/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Estrutura Terciária de Proteína , Curva ROC , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
18.
J Pharmacol Exp Ther ; 340(2): 266-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22028392

RESUMO

The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic ß cell ATP-sensitive K+ (KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic ß cell KATP channel and the Kir6.2ΔC36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by intraperitoneal glucose tolerance test and on fasting glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP (IC50 = 10.1 × 10⁻9 M) and Kir6.2ΔC36 (IC50 = 9.6 × 10⁻9 M) channels, which induced depolarization. In contrast, the 2-phenyl analog was a potent opener (drug concentration needed to enhance the current by 50% = 0.04 × 10⁻9 M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl > 2-benzyl > 2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg/kg) and 2-phenyl analogs (2-30 mg/kg) reduced and enhanced the glucose areas under the curves, respectively, after glucose loading in mice. These compounds did not affect the fasting glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which confer the KATP channel blocking action with glucose-lowering effects and the opening action with increased glucose levels, respectively. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel antidiabetic drugs.


Assuntos
Benzoxazinas/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Animais , Área Sob a Curva , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Jejum/sangue , Glucose/farmacologia , Teste de Tolerância a Glucose , Glibureto/farmacologia , Células HEK293 , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Azida Sódica/farmacologia , Tolbutamida/farmacologia
19.
J Appl Physiol (1985) ; 106(4): 1311-24, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19131478

RESUMO

The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg x kg(-1) x day(-1) ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-beta(1) was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Pentoxifilina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Animais , Cálcio/metabolismo , Creatina Quinase/metabolismo , Eletrofisiologia , Corantes Fluorescentes , Fura-2 , Imuno-Histoquímica , Contração Isométrica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Microeletrodos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/patologia , Técnicas de Patch-Clamp , Condicionamento Físico Animal/fisiologia , Espécies Reativas de Oxigênio/metabolismo
20.
Neurobiol Dis ; 32(2): 243-53, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18694830

RESUMO

Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.


Assuntos
Distrofina/metabolismo , Gentamicinas/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal , Inibidores da Síntese de Proteínas/uso terapêutico , Animais , Aquaporina 4/metabolismo , Peso Corporal/efeitos dos fármacos , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos mdx , Força Muscular/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/etiologia , Distrofia Muscular Animal/patologia , Técnicas de Patch-Clamp , Condicionamento Físico Animal/efeitos adversos , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...